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In this paper, we propose a penalised pseudo-partial likelihood method for variable
selection with multivariate failure time data with a growing number of regression
coefficients. Under certain regularity conditions, we show the consistency and asymptotic
normality of the penalised likelihood estimators. We further demonstrate that, for certain
penalty functions with proper choices of regularisation parameters, the resulting estimator
can correctly identify the true model, as if it were known in advance. Based on a simple
approximation of the penalty function, the proposed method can be easily carried out
with the Newton–Raphson algorithm. We conduct extensive Monte Carlo simulation
studies to assess the finite sample performance of the proposed procedures. We illustrate
the proposed method by analysing a dataset from the Framingham Heart Study.

Some key words: Cox’s model; Marginal hazards model; Penalised likelihood; Smoothly clipped absolute
deviation; Variable selection.

1. I

Deciding which covariates are to be included in the final statistical model has always
been a tricky task for investigators, and a valid and unified statistical model selection
criterion is desirable. We propose a penalised pseudo-partial likelihood method for variable
selection in multivariate failure time analysis. Our research is motivated by the need
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to develop a predictive model that relates multiple failure time outcomes, namely time to
coronary heart disease and time to cerebrovascular accident, and a vector of risk factors
for patients in the Framingham Heart Study (Dawber, 1980). The primary sampling unit
is the family, and it is likely that the failure times recorded for subjects within a family
are correlated. Extensions of the Cox regression model (Cox, 1972) for the analysis of
multivariate failure time data include the frailty model and the marginal model. When
the correlation among the observations is not of interest, the marginal proportional
hazards models has received considerable attention in the recent literature (Wei et al.,
1989; Lee et al., 1992; Liang et al., 1993; Lin, 1994; Cai & Prentice, 1995, 1997; Spiekerman
& Lin, 1998; Clegg et al., 1999). Thus, we will focus on the marginal models.

Some of the variable selection criteria and procedures in linear regression analysis have
been extended to the Cox model: Tibshirani (1997) extended his  variable selector;
Faraggi & Simon (1998) proposed a Bayesian variable selection method for the Cox
model; Cai (1999) extended the generalised likelihood ratio method to deal with multi-
variate failure time data; Fan & Li (2002) extended their nonconcave penalised likelihood
approach; Huang & Harrington (2002) proposed penalised partial likelihood with a
quadratic penalty to deal with issues of collinearity of covariates; and Bunea & McKeague
(2005) extended -type (Schwarz, 1978) variable selection criteria to the Cox model.
In general, the variable selection procedure for multivariate failure time data is under-
developed, and this paper intends to fill that gap.

Fan & Li (2002) studied penalised partial likelihood for variable selection problems
and demonstrated that their penalised partial likelihood procedure performs as well as an
oracle estimator, namely the estimator constructed with the aid of an oracle who knows
the true model, i.e. the subset of variables with nonvanishing coefficients, only in finite-
parameter settings. However, they do not address the fundamental issues in model
selection. In practice, to reduce possible modelling biases, many variables are introduced
at the initial stage of modelling. Huber (1973) noted that, in the context of variable
selection, the number of parameters is often large and should be modelled as d

n
, which

tends to infinity as the sample size n tends to infinity. In this paper, we intend to address
the fundamental problems of variable selection for the Cox marginal model with a
diverging number of parameters. To this end, we propose a new formulation for variable
selection, which differs from that in Fan & Li (2002). We study asymptotic properties of
penalised pseudolikelihood in the context of the marginal multivariate failure model, when
the number of regression coefficients tends to infinity. This includes of course the use of
penalised partial likelihood in the proportional hazards model. We first show the root-
n/d
n
consistency of the penalised pseudo-partial likelihood estimator and then demonstrate

that the newly proposed variable selection procedures still possess the oracle property. As
a consequence, our results directly provide the asymptotic behaviours of the maximum
partial likelihood estimator (Andersen & Gill, 1982) and the maximum pseudo-partial
likelihood estimator (Spiekerman & Lin, 1998; Clegg et al., 1999) when the number of
covariates grows with sample size.

2. M     - 

2·1. Notation

To fix notation, suppose that there are n independent clusters and that each cluster has
K
i
subjects. For each subject, J types of failure may occur. For the failure time in the case

of the jth type of failure on subject k in cluster i, the marginal hazards model is taken
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either as

h
ijk

{t|x
ijk

(t)}=h
0j

(t) exp{bTx
ijk

(t)}, (2·1)

or

h
ijk

{t|x
ijk

(t)}=h
0
(t) exp{bTx

ijk
(t)}, (2·2)

where b= (b1 , . . . , bd
n

)T is a vector of unknown regression coefficients, d
n
is the dimension

of b, x
ijk

(t) is a possibly external time-dependent covariate vector, and h
0j

(t) and h0 (t) are
unspecified baseline hazard functions. Model (2·1) is commonly referred to as the mixed
baseline hazards model, while (2·2) is the common baseline hazards model.

2·2. Penalised pseudo-partial likelihood

The marginal model approach does not specify correlation structure for the failure times
within a cluster, and hence inferences are based on a pseudo-partial likelihood approach.
For ease of presentation, we drop the subscript and let T, C and x(t) be the survival time,
the censoring time and their associated covariates, respectively. Correspondingly, let
Z=min{T, C} be the observed time, let d=I(T∏C) be the censoring indicator, and let
Y (t)=I(Z�t) be the at-risk indicator. We further assume that T and C are conditionally
independent given x and that the censoring mechanism is noninformative. Under a
working independence assumption (Wei et al., 1989), i.e. assuming independence among
failure times in a cluster, we obtain the logarithm of a pseudo-partial likelihood function
for model (2·1) as

l(b)= ∑
n

i=1
∑
J

j=1
∑
K
i

k=1
d
ijkAbTxijk (Zijk )− logC ∑n

l=1
∑
K

g=1
Y
ljg

(Z
ijk

) exp{bTx
ljg

(Z
ijk

)}DB .
(2·3)

To balance modelling biases and estimation variance, many traditional variable selection
criteria have resorted to the use of penalised likelihood, including the  (Akaike, 1973)
and  (Schwarz, 1978). We use a penalised pseudo-partial likelihood for model (2·1)
which is defined as

L(b)=l(b)−n ∑
d
n

j=1
p
l
j

(|b
j
|), (2·4)

where p
l
j

(|b
j
|) is a given nonnegative function called a penalty function with l

j
as a

regularisation or tuning parameter. The tuning parameters can be chosen subjectively by
data analysts or objectively by data themselves. In general, large values of l

j
’s result in

simpler models with fewer selected variables. The penalty term in (2·4) is more general
than that in Fan & Li (2001), who considered l

j
¬l. Allowing covariate-specific tuning

parameters enables different regression coefficients to have different penalty functions, and
thus the penalised pseudo-partial likelihood may directly incorporate hierarchical prior
information about the unknown coefficients. For instance, we may wish to keep the main
effects of some important confounding variables in the model by not penalising their
corresponding coefficients.

Many classical variable selection criteria are special cases of (2·4). For instance,
consider the L 0 penalty p

l
(|h|)=1

2
l2I{|h|N0}, also called the entropy penalty, where I(.)

is an indicator function. Also,  (Akaike, 1973),  (Schwarz, 1978), the w-criterion
(Shibata, 1984) and  (Foster & George, 1994) correspond to l= (2/n)D, {log (n)/n}D,
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[ log{log(n)}]D and {log(d
n
)/n}D, respectively, where n is the sample size, although these

criteria were motivated from different principles. Since the entropy penalty function is
discontinuous, one requires to search over all possible subsets to maximise (2·4). Hence
it is very expensive computationally. Furthermore, as analysed by Breiman (1996), best-
subset variable selection suffers from several drawbacks, including its lack of stability.

Recently, authors have considered continuous penalty functions. The L 1 penalty,
defined by p

l
(|h|)=l|h|, results in the  variable selector (Tibshirani, 1996). Fan &

Li (2001) advocated the smoothly clipped absolute deviation penalty, whose first derivative
is defined by

p∞
l
(h)=lI(h∏l)+

(al−h)
+

a−1
I(h>l), (2·5)

for some a>2 and h>0, with p
l
(0)=0. This penalty improves the entropy penalty

function by saving computational cost and resulting in a continuous solution to avoid
unnecessary modelling variation. Furthermore, it improves the L 1 penalty by avoiding
excessive estimation bias.

2·3. Oracle properties

The penalised pseudo-partial likelihood estimator, denoted by b@ , maximises (2·4). For
certain penalty functions, such as the L

1
penalty and the smoothly clipped absolute

deviation penalty, maximising L (b) will result in some vanishing estimates of coefficients
and their associated variables are deleted. Hence, by maximising L (b), we select a model
and estimate its parameters simultaneously. We now present the asymptotic properties
for b@ and show that it could perform as well as an oracle estimator.

Denote by b0 the true value of b. Furthermore, let b10 and b20 denote the nonzero and
zero components of b0 , respectively. Denote by s

n
the dimension of b10 and let

a
n
= max
1∏j∏s

n

{|p∞
l
jn

(|b
j0
|) | : b
j0
N0}, b

n
= max
1∏j∏s

n

{|p◊
l
jn

(|b
j0
|) | : b
j0
N0}. (2·6)

In this section, we use l
jn

rather than l
j
to emphasise its dependence on n. We first show

that there exists a penalised pseudo-partial likelihood estimator that converges at rate
O
P
{√(d

n
) (n−D+a

n
)}, and then we establish the oracle property for the resulting estimator.

We only state the main results here and relegate the regularity conditions and proofs to
the Appendix.

T 1. Under Conditions A1–A4 in the Appendix, if a
n
�0, b

n
�0 and d4

n
/n�0,

as n�2, then, with probability tending to one, there exists a local maximiser b@ of L(b),
defined in (2·4), such that db@−b0d=O

P
{√(d

n
) (n−D+a

n
)}.

From Theorem 1, provided that a
n
=O(n−D ), there exists a √(n/d

n
)-consistent penalised

pseudo-partial likelihood estimator. This consistency rate is the same as that of the
maximum likelihood estimator for the exponential family (Portnoy, 1988).

We now establish an oracle property. Let

S=diag{p◊
l
1n

(|b
10
|), . . . , p◊

l
snn

(|b
s
n
0
|)},

b= ( p∞
l
1n

(|b
10
|) sgn(b

10
), . . . , p∞

l
snn

(|b
s
n
0
|) sgn(b

s
n
0
))T.

Since the length of b@1 depends on n, we will follow the formulation in Huber (1973) and
Portnoy (1988), and consider any linear combination cT

n
b@
1

in the following theorem.
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T 2. Under Conditions A1–A5 in the Appendix, if b
n
�0, d4

n
/n�0, l

jn
�0,

l
jn
√(n/d

n
)�2 and a

n
=O(n−D ), then, under the conditions of T heorem 1, with probability

tending to 1, the √(n/d
n
)-consistent local maximiser b@= (b@T

1
, b@T
2
)T in T heorem 1 must be such

that (i ) b@2=0 and (ii ) , for any nonzero constant s
n
×1 vector c

n
with cT

n
c
n
=1,

√ncT
n
C−D
11

(A
11
+S ){b@

1
−b
10
+ (A

11
+S )−1b}�N(0, 1), (2·7)

in distribution, where A11 and C11 consist of the first s
n

columns and rows of A(b10 , 0) and
C (b10 , 0), defined in the Appendix, respectively.

Theorem 2 provides a foundation for choosing estimators that will have the oracle
property. For example, with the smoothly clipped absolute deviation penalty, we have
a
n
=0, b=0 and S=0 for sufficiently large n. Hence, according to Theorem 2, we have that

√ncT
n
C−D
11

A
11

(b@
1
−b
10

)�N(0, 1),

in distribution. The estimator b@1 shares the same sampling property as the oracle
estimator. Furthermore, b@2=0 is the same as the oracle estimator that knows in advance
that b2=0. In other words, the penalised pseudo-partial likelihood estimator possesses
the oracle property. In contrast, it can easily be shown from Theorems 1 and 2 that the
procedure based on the L 1 penalty does not possess the oracle property, because of
the excessive biases.

2·4. Issues in practical implementation

Since penalty functions such as the smoothly clipped absolute deviation and the L 1 are
singular at the origin, it is challenging to maximise L(b). Following Fan & Li (2001), we
will use a local quadratic approximation to the penalty function in our implementation.
Suppose that we are given an initial value b(0) that is close to the true value of b. If
b(0)
j

is not close to 0, then the penalty function is locally approximated by a quadratic
function as

p
l
j

(|b
j
|)jq

l
j

(|b
j
|)¬p

l
j

(|b(0)
j
|)+1
2
{p∞
l
j

(|b(0)
j
|)/|b(0)
j
|}(b2
j
−b(0)2
j

).

Otherwise, set b@
j
=0. With the aid of the local quadratic approximation, the Newton–

Raphson algorithm can be applied to maximise the penalised pseudo-partial likelihood
function. We set the maximum pseudo-partial likelihood estimate b@ u, the maximiser of
l (b) in (2·3), as the initial value of b since it is (n/d

n
)D-consistent by Theorem 1 with l

j
=0.

The modified Newton–Raphson algorithm also allows us to estimate the variance-
covariance matrix for b@ by using the sandwich formula:

co@v(b@ )={L◊
a
(b@ )}−1 co@v{L∞

a
(b@ )}{L◊

a
(b@ )}−1 ,

where L
a
(b)=l(b)−n Wdnj=1

q
l
j

(|b
j
|). Therefore, L◊

a
(b@ )=l◊ (b@ )−nS

l
(b@ ), where

S
l
(b@ )=diag{p∞

l
1

(|b@
1
|)/|b@
1
|, . . . , p∞

l
dn

(|b@
d
n

|)/|b@
d
n

|},

and cov{L∞
a
(b@ )} is estimated by co@v{l∞ (b@ )}. The sandwich formula applies only to non-

zero estimated coefficients. The performance of this estimator will be examined in our
simulation studies.

Similarly to Fan & Li (2002), we will employ generalised crossvalidation to select
the l

j
’s. In the last step of the Newton–Raphson iteration, we may compute the effective

number of parameters, given by

e(l
1
, . . . , l

d
n

)=tr[{L◊
a
(b@ )}−1l◊ (b@ )].
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The generalised crossvalidation statistic is defined by

 (l1 , . . . , ld
n

)=
−l(b@ )

n{1−e(l
1
, . . . , l

d
n

)/n}2
.

The minimisation problem over a d
n
-dimensional space is difficult. However, it is expected

that the magnitude of l
j
should be proportional to the standard error of the unpenalised

maximum pseudo-partial likelihood estimator of b
j
. In practice, we suggest taking

l
j
=l (b@ u

j
), where  (b@ u

j
) is the estimated standard error of b@ u

j
. Such a choice of l

j
works

well from our simulation experience. Thus, the minimisation problem will reduce to a
one-dimensional problem, and the tuning parameter can be estimated by a grid search.

2·5. Extensions

The rate of convergence and the oracle property for the marginal model (2·1) can be
easily extended to other marginal hazards models, such as (2·2), with a slightly different
pseudo-partial likelihood function. For example, for the common baseline hazards model
(2·2), we can use the following pseudo-partial likelihood:

l
c
(b)= ∑

n

i=1
∑
J

j=1
∑
K
i

k=1
d
ijkAbTxijk (Zijk )− logC ∑n

l=1
∑
J

m=1
∑
K
i

g=1
Y
lmg

(Z
ijk

) exp{bTx
lmg

(Z
ijk

)}DB .
The corresponding asymptotic results in Theorems 1 and 2 for the estimator based
on the penalised pseudo-partial likelihood l

c
(b)−n Wdnj=1

p
l
j

(|b
j
|) can be established using

similar arguments to those in the Appendix.

3. N   

3·1. Simulation study

In our simulations, we take J=K=2, and the failure times T
i11

, T
i12

, T
i21

and T
i22

for
the ith cluster are generated from the multivariate Clayton–Oakes distribution (Clayton
& Cuzick, 1985; Oakes, 1989) with a marginal exponential distribution for the two types
of failure and for the two subjects in a cluster

pr(T
i11
>t
i11

, T
i12
>t
i12

, T
i21
>t
i21

, T
i22
>t
i22
|x
ijk

, j=1, 2, k=1, 2)

=C ∑2
j=1
∑
2

k=1
exp{t

ijk
l
0j
h−1 exp(bTx

ijk
)}−3D−h ,

where b= (0·6, 0, 0,−0·8, 0, 0, 0·35, 0)T, which is an eight-dimensional vector consisting
of three nonzero components and five zero components. In our simulation, l01=1 and
l02=5. The covariate vector x

ijk
has a normal distribution with standard normal marginals

and the correlation between x
ijkl

and x
ijkl∞

being r|l−l∞| with r=0·5. Censoring times
C
ijk

are generated from the Un(0, c) distribution. We took c=5 or 1, corresponding
to censoring rates of approximately 15% and 40%, respectively. For the multivariate
Clayton–Oakes distribution, h�0 gives the maximal positive correlation of 1 between
failure times and h�2 corresponds to independence. In our simulation, h was chosen
to be 0·25, 1·5 or 5, which corresponds to high, moderate or low positive dependence,
respectively. The number of clusters was taken as n=100. The smoothly clipped absolute
deviation penalty function involves two tuning parameters l and a. Following Fan & Li
(2001), we set a=3·7 throughout § 3. We use generalised crossvalidation to select the
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tuning parameter for the smoothly clipped absolute deviation method and the L 1 method.
We compare the proposed penalised pseudo-partial likelihood procedures with the best
subset variable selection and the oracle procedure in terms of model error, model
complexity and rate of correctly identifying the true model.

We examine the performance of the proposed penalised likelihood procedures with
various penalties using model error. The model error is defined as (m@ )=E{E(Y |x)−m@ (x)}2
for a general regression model with E(Y |x)=m(x). In our simulations, the baseline hazard
function h

0j
(t) is taken to be a constant h

j
. By some straightforward calculations, the

model error for m
j
(x)=E(T

.j.
|x) in our simulation settings may be approximated by

 (m@
j
)jh−2
j

(b@−b)T{ExxT exp(−2bTx)}(b@−b),

which will be referred to as the approximate model error.
We define the relative approximate model error of a procedure to be the ratio of its

approximate model error to that of the maximum pseudo-partial likelihood estimates
from the full model. Table 1 gives the median and median absolute deviation of ratios of
approximate model error of the proposed procedures over 500 simulations. The average
number of zero coefficients demonstrates how the proposed procedure reduces model

Table 1: Simulation study. Relative approximate model errors, where c is the range of
censoring time,  is the average number of coeYcients correctly estimated as 0, and  is the

average number of coeYcients erroneously estimated as 0

c=5 c=1
 Zero coef.   Zero coef. 

Method median ()   (%) median ()   (%)

h=0·25
 0·685 (0·201) 4·948 0·018 93·2 0·632 (0·234) 4·910 0·064 86·6
L 1 0·916 (0·067) 3·600 0·000 24·0 0·909 (0·080) 3·502 0·002 19·6
 0·849 (0·104) 4·252 0·000 45·6 0·826 (0·120) 4·162 0·004 40·6
 0·724 (0·181) 4·852 0·002 85·6 0·670 (0·192) 4·828 0·010 83·4
 0·821 (0·122) 4·406 0·000 50·8 0·776 (0·138) 4·352 0·004 47·6
w 0·891 (0·083) 3·900 0·000 32·2 0·871 (0·099) 3·810 0·002 26·0
Oracle 0·651 (0·219) 5·000 0·000 100 0·577 (0·218) 5·000 0·000 100

h=1·5
 0·591 (0·223) 4·940 0·008 94·4 0·613 (0·231) 4·922 0·060 88·0
L 1 0·900 (0·076) 3·610 0·000 22·2 0·899 (0·081) 3·530 0·000 21·0
 0·821 (0·131) 4·198 0·000 43·4 0·818 (0·120) 4·182 0·002 41·6
 0·629 (0·211) 4·848 0·000 86·2 0·650 (0·209) 4·838 0·002 86·2
 0·780 (0·148) 4·376 0·000 51·0 0·784 (0·134) 4·382 0·000 50·8
w 0·866 (0·102) 3·882 0·000 29·2 0·862 (0·092) 3·854 0·000 28·0
Oracle 0·561 (0·226) 5·000 0·000 100 0·541 (0·231) 5·000 0·000 100

h=5
 0·604 (0·214) 4·926 0·016 92·2 0·585 (0·229) 4·932 0·074 86·8
L 1 0·904 (0·083) 3·474 0·002 20·0 0·895 (0·085) 3·622 0·002 21·8
 0·794 (0·128) 4·150 0·002 40·4 0·808 (0·135) 4·228 0·002 41·8
 0·644 (0·201) 4·848 0·002 86·6 0·613 (0·209) 4·840 0·004 85·0
 0·749 (0·134) 4·370 0·002 48·2 0·772 (0·147) 4·386 0·004 47·8
w 0·870 (0·108) 3·800 0·002 27·4 0·856 (0·103) 3·948 0·000 30·0
Oracle 0·565 (0·205) 5·000 0·000 100 0·511 (0·209) 5·000 0·000 100

, relative approximate model error; , rate of identifying the true model; , median absolute
deviation; , smoothly clipped absolute deviation.
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complexity and is reported in Table 1, in which the column labelled ‘’ stands for the
average number of coefficients correctly estimated as 0, while the column labelled ‘’ depicts
the average number of coefficients erroneously estimated as 0. The rate of correctly
identifying the true model is also reported in Table 1, in which , L 1 , , , 
and w stand for the penalised likelihood procedure with the smoothly clipped absolute
deviation, L 1 , , ,  and w penalties, as defined in § 2, respectively, and ‘Oracle’
for the oracle procedure. Since the entropy penalty is discontinuous, the solutions for ,
,  and w are obtained by exhaustively searching over all possible subsets. Thus,
the resulting subsets are indeed the best subsets for the corresponding criterion, and the
computational cost for these procedures is much more expensive than that for the smoothly
clipped absolute deviation and L 1 methods. Table 1 shows that the smoothly clipped
absolute deviation method outperforms the other variable selection procedures in terms
of model error, model complexity and rate of correctly identifying the true model.
Furthermore, its ratio of approximate model error is very close to that of the oracle
estimator, which is consistent with the result in Theorem 2, and the method reduces the
model complexity almost as effectively as the oracle procedure.

We have also tested the accuracy of the standard error formula using the sandwich
formula. To save space, we do not present the results here; see the authors’ technical report
for thorough discussion. In general, the sandwich formula gives us accurate estimates of
standard errors and coverage probabilities which are close to the nominal level.

3·2. Analysis of the Framingham study dataset

We illustrate the proposed variable selection procedures by an analysis of a dataset
collected in the Framingham Heart Study. The study was initiated in 1948, with 2336 men
and 2873 women aged between 30 and 62 years at their baseline examination (Dawber,
1980). Multiple failure outcomes, such as times to coronary heart disease and cerebro-
vascular accident, were observed from the same individual. In addition, as the primary
sampling unit was the family, failure times are likely to be dependent for the individuals
within a family.

For simplicity, we consider only time taken to obtain first evidence of coronary heart
disease and of a cerebrovascular accident, and analyse only data for participants who had
an examination at age 44 or 45 and were disease-free at that examination. By disease-free
we mean that there exists no history of hypertension or glucose intolerance and no previous
experience of coronary heart disease or a cerebrovascular accident. The time origin is the
time of the examination at which an individual participated in the study and the follow-up
information is up to the year 1980. The risk factors of interest are as follows: body mass
index, denoted by x1 ; cholesterol level, x2 ; systolic blood pressure, x3 ; smoking status, x4 ,
coded as 1 if this individual is a smoker, and 0 otherwise; gender, x5 , coded as 1 for female
and 0 for male. The values of risk factors were taken from the biennial examination at
which an individual was included in the sample. Since some individuals were in the study
for several years prior to inclusion into the dataset, the waiting time, denoted by x6 ,
from entering the study to reaching 44 or 45 years of age was used as a covariate to
account for the cohort effect. Since x1 , x2 , x3 and x6 are continuous covariates, they are
standardised individually in our analysis.

To explore possible nonlinear effects and interaction effects of the risk factors, we include
all main effects, quadratic effects and interaction effects of the risk factors and covariates
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in the full model. This results in a mixed baseline hazard model with 50 covariates:

h
ijk

(t, x
ijk

)=h
0j

(t) exp (bT
j
x
ijk

), (3·1)

where x
ijk

consists of all possible linear, quadratic and interaction terms of the risk
factors and covariates x1 to x6 . Model (3·1) allows different baseline hazards and different
regression coefficients for coronary heart disease and cerebrovascular accident, but an
identical baseline hazards for siblings.

The maximum pseudo-partial likelihood estimate for b is computed. The logarithm
of the pseudo-partial likelihood for the full model of 50 covariates is −2017·9590. Next
we apply the smoothly clipped absolute deviation procedure to model (3·1) to select
significant variables. In the implementation of the procedure, since all covariates are
important confounding variables or risk factors, we include them in the model by not
penalising the linear main effects of x1 to x6 . Thus, all linear effects are included in the
selected model. The generalised crossvalidation method is used to select the regularisation
parameter, giving l=0·9053. The logarithm of the pseudo-partial likelihood for the
model selected by the smoothly clipped absolute deviation method with the selected l is
−2022·6635. This represents a decrease of 4·7045 over that of the full model, which is

Table 2. Estimated coeYcients and standard
errors for the Framingham Heart Study data

 

Effect b@ ((b@ )) b@ ((b@ ))

x1 0·0810 (0·1288) 0·4773 (0·2423)
x2 0·0576 (0·1200) −0·2409 (0·2655)
x3 0·4129 (0·1570) 0·2917 (0·1477)
x4 0·4754 (0·2361) 0·7077 (0·3587)
x5 −0·3666 (0·2543) −0·1016 (0·2890)
x6 0·0249 (0·0802) −0·1395 (0·1916)

x2
1

−0·0743 (0·0512) 0 (−)
x2
2

0 (−) −0·0768 (0·1052)
x2
3

0 (−) 0 (−)
x2
6

0 (−) 0·2062 (0·1229)

x11x2 0 (−) 0 (−)
x11x3 0 (−) −0·2224 (0·1435)
x11x4 0·1409 (0·1495) −0·2207 (0·2628)
x11x5 0 (−) 0 (−)
x11x6 −0·1060 (0·0808) 0 (−)

x21x3 0 (−) 0 (−)
x21x4 0·1550 (0·1425) 0·5702 (0·3766)
x21x5 0 (−) 0 (−)
x21x6 0 (−) 0 (−)

x31x4 −0·1952 (0·1489) 0 (−)
x31x5 −0·2054 (0·1378) 0 (−)
x31x6 0 (−) 0 (−)

x41x5 −0·3071 (0·3106) 0 (−)
x41x6 0 (−) 0 (−)

x51x6 0 (−) 0·5753 (0·2545)

, coronary heart disease; , cerebrovascular
accident; , standard error.
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much less than 25/2, half of the number of covariates excluded from the full model; see
Table 2. From an extension of Theorem 3 of Cai (1999), the limiting distribution of the
pseudo-partial likelihood ratio statistic is a weighted sum of x2

1
distributions. Based on

100 000 Monte Carlo simulations, we computed the p-value, which equals 0·9926 and
which supports the selected model.

In another confirmation of the selected model, we compare it with the linear main
effects model which includes only the linear main effects of x1 to x6 . The relevant pseudo-
partial likelihood ratio statistic is 23·9783. Based on 100 000 Monte Carlo simulations,
the corresponding p-value equals 0·0353, indicating that the selected model fits the data
better than the model with only the linear main effects.

The resulting estimates and standard errors for b in the selected model are given in
Table 2. For all terms associated with x1 , x2 , x3 and x6 , the results in Table 2 are
based on the standardised variables rather than the original ones. Table 2 clearly indicates
that there are a few possible quadratic effects and many interactions among the risk
factors on coronary heart disease and cerebrovascular accident. It shows that subjects
with higher cholesterol level have higher risk of developing coronary heart disease.
There is interaction between cholesterol level and smoking status, and the hazard ratio
is exp(0·0576+0·1550)=1·24 for smokers and exp(0·0576)=1·059 for nonsmokers,
for an increase of 3·6 mg/dL, that is one standard deviation, in cholesterol level. For
a given cholesterol level x2 , the hazard ratio for smokers relative to nonsmokers is
exp(0·4754+0·1550x2 ).
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A

T heory

Let N
ijk

(t)=I(Z
ijk
∏t, d

ijk
=1) be the counting process, and let h

ijk
(t) and

M
ijk

(t)=N
ijk

(t)−P t
0

Y
ijk

(u)h
ijk

(u) du

be their corresponding marginal hazards function and marginal martingale, respectively, with
respect to the filtration F

jk
(t− ), where F

jk
(t) is the s-field generated by

{N
ijk

(u), Y
i11

(u), . . . , Y
iJK

(u), x
i11

(u), . . . , x
iJK

(u); 0∏u∏t, i=1, . . . , n}.

Here, without loss of generality, we take K
i
=K. Define

S(d)
jk

(b; t)=
1

n
∑
n

i=1
Y
ijk

(t)x
ijk

(t)Ed exp{bTx
ijk

(t)} (d=0, 1, 2),

S(d)
j.

(b; t)= ∑
K

k=1
S(d)
jk

(b; t) (d=0, 1, 2),

E
j
(b; t)=S(1)

j.
(b; t)/S(0)

j.
(b; t), V

j
(b; t)=S(2)

j.
(b, t)/S(0)

j.
(b, t)−E

j
(b; t)E2,

where aE0=1, aE1=a and aE2=aaT for a vector a.
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We require the following regularity conditions.

Condition A1. For simplicity, assume that T
ijk

takes values on a finite interval [0, t], and that
∆t
0
h
0j

(t) dt<2 for j=1, . . . , J.

Condition A2. There exists a neighbourhood B of the true value b0 that satisfies each of the
following conditions: (i) there exists a scalar, a vector and a matrix function s(d)

jk
(b, t) (d=0, 1, 2)

defined on B×[0, t] such that sup
tµ[0,t],bµB

dS(d)
jk

(b, t)−s(d)
jk

(b, t)d�0 in probability; (ii) there exists
a matrix C=C(b) such that d(1/n) Wn

i=1
var(D

i
)−Cd�0, where

D
i
= ∑
J

j=1
∑
K

k=1
P t
0

{x
ijk

(t)−e
j
(b
0
; t)}dM

ijk
(t),

and e
j
(b; t)={WK

k=1
s(1)
jk

(b; t)}/{WK
k=1

s(0)
jk

(b; t)}. Assume further that there exist constants C1 and
C2 , such that

0<C
1
<lmin (C )∏lmax (C )<C

2
<2 (A·1)

for all n, where lmin (C ) and lmax (C ) stand for the minimal and maximal eigenvalues of C,
respectively.

Condition A3. Using the notation in Condition A2, define

v
j
=
WK
k=1

s(2)
jk

(b, t)

WK
k=1

s(0)
jk

(b, t)
−e
j
(b; t)E2.

Then, for all bµB, tµ[0, t], j= 1, . . . , J and k= 1, . . . , K, define s(1)
jk

(b, t)=∂s(0)
jk

(b; t)/∂b
and s(2)

jk
(b; t)=∂s(1)

jk
(b; t)/∂b. Assume that s(0)

jk
(b; t) is bounded away from 0 on B×[0, t]. Let

A(b)=W
j
∆t
0
v
j
(b; t) W

k
s(0)
jk

(b; t)h
0j

(t) dt, and assume that there exist positive constants C3 and C4
such that

0<C
3
<lmin{A(b

0
)}∏lmax{A(b

0
)}<C

4
<2, (A·2)

for all n.

Condition A4. There exists a constant C5 such that sup
1∏i∏n

ED2
ik
D2
il
∏C
5
<2 for all 1∏k, l∏d

n
.

Condition A5. Assume that p
l
j

(|b
j
|) satisfies lim inf

n�2
lim inf

b
j
�0+

p∞
l
j

(b
j
)/l
j
>0, for all

j=1, . . . , d
n
. Assume further that there exists a constant C6 such that, for nonzero h1 and h2 ,

|p◊
l
j

(h
1
)−p◊
l
j

(h
2
)|∏C

6
|h
1
−h
2
|, for all j=1, . . . , d

n
.

Proof of T heorem 1. L et a
n
=√(d

n
)(n−1/2+a

n
). To prove Theorem 1, it is sufficient to show that,

for any given e>0, there exists a large constant C such that

prq sup

dud=C
L(b
0
+a
n
u)<L(b

0
)r�1−e. (A·3)

This implies that there exists a local maximiser such that db@−b0d=O
p
(a
n
).

Note that p
l
(0)=0 and p

l
( . )�0. It follows by Taylor expansion that

L(b
0
+a
n
u)−L(b

0
)∏{l(b

0
+a
n
u)−l(b

0
)}− n ∑

s
n

j=1
{p
l
jn

(|b
j0
+a
n
u|)−p

l
jn

(|b
j0
|)}

=I
1
+I
2
,

say. We first consider I1 . It follows by Taylor expansion that

I
1
=a
n
uTl∞ (b

0
)+
a2
n
2

uTl◊ (b*
n
)u=I

11
+I
12

,

say, where b*
n

lies between b0 and b0+anu. By the Cauchy–Schwartz inequality, it follows that

I
11
=a
n
uTl∞ (b

0
)∏a
n
dl∞ (b

0
)d dud=O

P
{a
n
√(nd

n
)}dud=O

P
(na2
n
)dud.
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We next deal with I12 . By the Chebyshev inequality, we can show that

pr{dn−1l◊ (b)+A(b)d�ed−1
n

}∏
d4
n

ne2
=o(1),

as d4
n
/n�0 by assumption. Thus,

dn−1l◊ (b)+A(b)d=o
P
(d−1
n

), (A·4)

in probability, uniformly in bµB. Hence I
12
=−1

2
na2
n
uTA(b0 )u{1+o

P
(1)}. By the assumption that

lmin{A(b0 )}�C1>0, I12 dominates I11 uniformly in dud=C for a sufficiently large C. The proof
is completed by showing that I12 also dominates I2 uniformly in dcd=C for a sufficiently large
constant C. To this end, from the Taylor expansion of I2 , it can be shown by the Cauchy–Schwarz
inequality that I2 is dominated by a2

n
dud+2b

n
na2
n
dud2 . Since b

n
�0, I12 dominates I2 if we choose

a sufficiently large C. Thus, (A·3) holds. %

The following lemma shows that the penalised pseudo-partial likelihood estimator must possess
the sparsity property b@2=0. Its proof is given in the authors’ technical report.

L A1. Under the conditions of T heorem 2, with probability tending to 1, for any given b1
satisfying db1−b10d=O

P
{√(d

n
/n)} and any constant C, it holds that

L{(bT
1
, 0)T}= max

db
2
d∏C√(d

n
/n)

L{(bT
1
, bT
2
)T}. (A·5)

Proof of T heorem 2. Part (i) immediately follows by Lemma A1. We next prove the asymptotic
normality of b@1 . As shown in our technical report, it holds that

l∞
1
(b
0
)−n(A

11
+S ){b@

1
−b
10
+ (A

11
+S )−1b}+o

p
(√n)=0, (A·6)

where l∞
1
(b
0
) consists of the first s

n
components of l∞ (b0 ), and A11 is the first s

n
×s
n

upper-left
submatrix of A(b0 ). Therefore,

√ncT
n
C−1/2
11

(A
11
+S ){b@

1
−b
10
+ (A

11
+S )−1b}=n−1/2cT

n
C−1/2
11

l∞
1
(b
0
)+o
p
(1).

We now show the asymptotic normality of n−1/2cT
n
C−1/2
11

l∞
1
(b
0
), because then the asymptotic

normality of b1 in (2·7) can be established by Slutsky’s theorem.
It can be shown by similar arguments to those in Andersen & Gill (1982) and Clegg et al. (1999)

that

n−1/2cT
n
C−1/2
11

l∞
1
(b
0
)=n−1/2 ∑

n

i=1
cT
n
C−1/2
11

D
i1
+o
P
(1),

where D
i1

consists of the first s
n

components of D
i
. Let

Y
ni
=n−1/2cT

n
C−1/2
11

D
i1

.

Next we verify the Lindeberg condition for Y
ni
. By Condition A2 and the Chebyshev inequality,

we obtain

∑
n

i=1
pr(|Y

ni
|>e)� (ne2 )−1 ∑

n

i=1
EcT
n
C−1/2
11

D
i1

DT
i1
C−1/2
11

c
n

=e−2cT
n
C−1/2
11 q1n ∑n

i=1
var(D

i1
)rC−1/211 c

n
=O(1).

By the Cauchy–Schwarz inequality and because cT
n
c
n
=1,

∑
n

i=1
EY 4
ni
=

1

n2
∑
n

i=1
E(cT
n
C−1/2
11

D
i1

)4∏
1

n2
l2max (C−111 ) ∑

n

i=1
EdD
i1
d4.
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By Condition A4, EdD
i1
d4=O(d2

n
) and, by (A·1), lmax (C−111 )=l−1min (C11 )∏l−1min (C )∏C−1

1
. It follows

from the Cauchy–Schwartz inequality that, for any e, Wn
i=1

EY 2
ni
I{|Y
ni
|>e}=O(d

n
/√n)=o(1). On

the other hand, as cT
n
c
n
=1,

∑
n

i=1
cov(Y

ni
)=

1

n
∑
n

i=1
cT
n
D−1
11

cov(D
i1

)D−1
11

c
n
�1.

Thus, Y
ni

satisfies the conditions of the Lindeberg–Feller central limit theorem. This also means
that n−1/2 Wn

i=1
cT
n
C−1/2
11

D
i1

is asymptotically N(0, 1) since D
i1

has zero mean. By Slutsky’s Theorem,

n−1/2cT
n
D−1/2
11

l∞
1
(b
0
)�N(0, 1)

in distribution as n�2. This completes the proof. %
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