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S.1. A LEMMA

To prove Lemma 1, we need the following Lemma S.1, which is a direct result of Götze &
Tikhomirov (2002). The proof of Lemma S.1 is similar to Bai & Sarandasa (1996) and is omitted.

LEMMA S.1. Suppose that xi, i = 1, · · · , n is a random sample from model (2.2) with
E(z6j ) <∞, j = 1, · · · , p. Further assume that there exists a positive constant b1 such that 20

1− tr(Σ ◦ Σ)/tr(Σ2) ≥ b21. Then it follows that

n‖x̄− µ‖2 − tr(Σ)

{2tr(Σ2)}1/2
→ N(0, 1),

in distribution.

S.2. PROOF OF LEMMA 2
Define

HR
1 =

[{2tr(Σ2)}1/2

{2t̂r(Σ2)}1/2
− 1
] 2nl2n
(n+2)2

W (µ, kn)− tr(Σ)

{2tr(Σ2)}1/2
,

HR
2 = − t̂r(Σ)− tr(Σ)

{2tr(Σ2)}1/2
,

HR
3 = −

[ 1

{2t̂r(Σ2)}1/2
− 1

{2tr(Σ2)}1/2
]{

t̂r(Σ)− tr(Σ)
}
.
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Then25

{2 t̂r(Σ2)}−1/2

{
2nl2n

(n+ 2)2
W (µ0, kn)− t̂r(Σ)

}
= {2 tr(Σ2)}−1/2

{
2nl2n

(n+ 2)2
W (µ0, kn)− tr(Σ)

}
+

3∑
i=1

HR
i .

By Lemma 1, it suffices to show that HR
i = op(1), i = 1, 2, 3, in order to show Lemma 2. Ac-

cording to Proposition A.2 of Chen et al. (2010), it follows that

t̂r(Σ)− tr(Σ) = Op

[
{n−1tr(Σ2)}1/2 + {n−1tr(Σ ◦ Σ)}1/2

]
,

t̂r(Σ2)− tr(Σ2) = Op

[
{n−2tr2(Σ2)}1/2 + {n−1tr(Σ4)}1/2 + {n−1tr(Σ2 ◦ Σ2)}1/2

]
.

By the assumption that all eigenvalues of Σ lie between two positive constants c0 and
C0, tr(Σ ◦ Σ) ≤ tr(Σ2) = O(p), tr(Σ4) = O(p), tr2(Σ2) = O(p2) and tr(Σ2 ◦ Σ2) ≤ tr(Σ4) =

O(p). Thus, under the condition that pn/n = cn → c ∈ [1,∞), we have that t̂r(Σ)− tr(Σ) =30

Op(1), t̂r(Σ2)− tr(Σ2) = Op(1). Now we deal with HR
1 :

|HR
1 | ≤

∣∣∣∣∣{2tr(Σ2)}1/2

{2t̂r(Σ2)}1/2
− 1

∣∣∣∣∣ ·
∣∣∣∣∣∣

2nl2n
(n+2)2

W (µ0, kn)− tr(Σ)

{2tr(Σ2)}1/2

∣∣∣∣∣∣
≤ {t̂r(Σ2)}−1/2[{t̂r(Σ2)}1/2 + {tr(Σ2)}1/2]−1 ·

∣∣∣tr(Σ2)− t̂r(Σ2)
∣∣∣ ·
∣∣∣∣∣∣

2nl2n
(n+2)2

W (µ0, kn)− tr(Σ)

{2tr(Σ2)}1/2

∣∣∣∣∣∣
= Op(1/p)Op(1) = op(1).

Similarly, we have

|HR
2 | ≤

1

{2tr(Σ2)}1/2
∣∣∣t̂r(Σ)− tr(Σ)

∣∣∣ = Op(1/p)Op(1) = op(1).

For HR
3 , we have

|HR
3 | ≤

∣∣∣{2t̂r(Σ2)}−1/2 − {2tr(Σ2)}−1/2
∣∣∣ · ∣∣∣t̂r(Σ)− tr(Σ)

∣∣∣
≤ C{tr(Σ2) · t̂r(Σ2)}−1/2 · [{t̂r(Σ2)}1/2 + {tr(Σ2)}1/2]−1 ·

∣∣∣tr(Σ2)− t̂r(Σ2)
∣∣∣ · ∣∣∣t̂r(Σ)− tr(Σ)

∣∣∣
= Op(p

−3/2)Op(1) = op(1).

The proof of Lemma 2 is completed.

S.3. ADDITIONAL NUMERICAL RESULTS35

S.3.1. Simulation results
Figure S1 presents the plot of Type I error rate and local power when p/n = 1.2. The overall

pattern of Figure S1 is similar to that of Figure 2 in the main text.
Linear hypothesis. We now examine the performance of TF

n for the linear hypothesis in Section
2.3. We take µ0 = 0, µ = δ(2, 1, · · · , 1)T /

√
n with δ = 0, 4, 7, 8 and 9, and F = (fij), a q ×40

p matrix with fjj = 1, fj,j+1 = −1 for j = 1, · · · , q, and all other elements being 0. This is
equivalent to testing H0 : µ1 = µ2 = · · · = µq, where q = 1.1n. We set ln = n5/4 log n, kn =
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Fig. S1. Empirical power functions of Tn, TCQ and TWPL with p/n = 1.2. Top, middle and bottom panels
are for zj ∼ N(0, 1), Gamma(4, 2)− 2 and zj ∼ (3/5)1/2t(5), respectively. The solid, dotted and

dashed curves are the empirical power curves of Tn, TCQ and TWPL, respectively.

(q/ log q)1/2, γ = (1, . . . , 1)T /
√
p in TF

n . Figure S2 depicts the empirical powers of TF
n based

on 1000 simulations. From Figure S2, we can see that the empirical rejection probabilities under
H0 are very close to 0.05 across all cases, when δ = 0. This indicates that the limiting null 45

distribution provides correct critical values. Also from Figure S2, the power functions increase
rapidly and approach one as the value of δ increases.

S.3.2. Real data analysis
In this section we illustrate the proposed test procedure by an empirical analysis of stock

data, which consist of nine sectors (consumer discretionary (CD), consumer staples (CS), en- 50
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Fig. S2. Power functions for assessing the performance of TF
n under local alternatives Ha

ergy, financials, health care (HC), industrials (IND), materials, information technology (IT) and
utilities) in the S&P 500 over a 25-month period from December 31, 2013. We mainly focus on
testing whether the mean vector of the monthly rate of returns of stocks in each sector is equal
to zero.

Let pk denote the number of stocks contained in the sector k with k = 1, 2, . . . , 9. The detailed55

value of pk is listed in the second column of Table S1. The price records of the stocks in sector
k at time t are denoted by {h(k)ji , j = 1, · · · , pk, i = 1, · · · , 25}. The i-th, i = 1, . . . , 24, log-



Test for high-dimensional mean vector 5

Table S1. The performance of Tn, TCQ and TWPL for large dimension data in S&P 500 .

Sector p Tn TCQ TWPL EL-Pvalue CQ-Pvalue WPL-Pvalue
CD 83 0.1954 0.2448 0.4054 0.8451 0.8066 0.6852
CS 38 2.2011 1.2698 1.1877 0.0277 0.2042 0.2349
Energy 40 0.7948 0.2830 0.9466 0.2601 0.7772 0.3439
Financials 80 -0.0715 -0.0455 0.0498 0.9430 0.9637 0.9603
HC 46 -0.5791 -0.4244 -0.2561 0.5625 0.6713 0.7978
IND 60 0.7227 0.4847 1.0451 0.4698 0.6279 0.2960
IT 63 -1.6169 -1.5866 -0.9996 0.1059 0.1126 0.3175
Materials 28 2.6797 2.4471 1.9694 0.0074 0.0144 0.0489
Utilities 32 0.2111 0.2870 -0.3202 0.8328 0.7741 0.7488

returns for stocks in sector k is

x
(k)
i =

(
log

h
(k)
1,i+1

h
(k)
1,i

, log
h
(k)
2,i+1

h
(k)
2,i

, . . . , log
h
(k)
pk,i+1

h
(k)
pk,i

)T

.

Denote µ(k) = Ex
(k)
1 . Of interest is to test

H
(k)
0 : µ(k) = 0 versus H

(k)
1 : µ(k) 6= 0. (S.1)

We calculate Tn for data in each sector with l = n5/4 log n, kn = (pk/ log pk)1/2 and α = 60

(1, 0, . . . , 0)T in (2.7) for each k. As a comparison, we also apply TCQ and TWPL for data in
each sector. Table S1 depicts the values of Tn, TCQ and TWPL and their corresponding P -values,
EL-Pvalue, CQ-Pvalue and WPL-Pvalue, respectively. The number of companies in each sector
ranges from 28 to 83 and is greater than the sample size 25.

Table S1 shows that the P -values of Tn, TCQ and TWPL for consumer staples sector are 0.0277, 65

0.2042 and 0.2349. It suggests that Tn is in favor of rejecting the null hypothesis at level 0.05,
while TCQ and TWPL fail to reject the null hypothesis. As to the sector of materials, Tn, TCQ and
TWPL all reject the null hypothesis at level 0.05. In particular, the p-value of Tn is 0.0074, which
is smaller than the p-values of TCQ and TWPL. As to the remaining seven sectors, all three test
statistics fail to reject the null hypothesis. In particular, the data from the sectors of information 70

technology (IT) and Financials show little change among three test statistics.
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