
Supplementary Materials to “Portal Nodes

Screening for Large Scale Social Networks”

APPENDIX A

Appendix A.1: Useful Lemmas

In this section we present and prove five useful lemmas, which could be employed

as tools in later proofs.

Lemma 1. Assume X follows sub-Gaussian distribution with mean 0 and moment

generating function satisfying E{exp(sX)} ≤ exp(σ2s2/2). Then the random variable

Z = X2 − E(X2) follows sub-exponential distribution with mean 0, and the moment

generating function satisfies E{exp(sZ)} ≤ exp(c2
zs

2) for all |s| ≤ 1/cz where cz is a

positive constant.

Proof: The proof can be found in Proposition 2.7.1 of Vershynin (2017).

Lemma 2. Let X = (X1, · · · , Xn)> ∈ Rn and Y = (Y1, · · · , Yn)> ∈ Rn be sub-

Gaussian random vectors, with each element Xi and Yi following sub-Gaussian distri-

butions. Specifically, let E(X) = 0 ∈ Rn, E(Y ) = 0 ∈ Rn, cov(X) = Σx ∈ Rn×n,

cov(Y ) = Σy ∈ Rn×n, and cov(X, Y ) = Σxy ∈ Rn×n. Then, for any matrix M ∈ Rn×n,

there exists positive constants ν, c1, c2, c3, and c4 that

P
{∣∣∣m−1(Y >MY )− σ(m)

y

∣∣∣ ≥ δ
}
≤ c1 exp

{
− c2σ

−1
2y m

2δ2
}
, (A.1)

P
{∣∣∣m−1(X>MY )− σ(m)

xy

∣∣∣ ≥ δ
}
≤ c3 exp

{
− c4σ

−1
2xym

2δ2
}
, (A.2)

for any 0 < δ < ν, where σ
(m)
y = m−1tr(MΣy), σ

(m)
xy = m−1tr(MΣxy), σ2y = tr(MΣyM

Σy) + tr(MΣyM
>Σy), σ2xy = tr(ΣxMΣyM

>) + tr(ΣxyM
>ΣxyM

>), and m is a nor-

malizing constant.
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Proof of (A.1): Note that Y >MY = 2−1Y >(M+M>)Y . Let Ỹ = Σ
−1/2
y Y . It can be

concluded Ỹ follows sub-Gaussian distribution. Let M = M +M>. It can be derived

Y >MY = Ỹ >(Σ
1/2
y )>M(Σ

1/2
y )Ỹ . In addition, let M̃ = (Σ

1/2
y )>M(Σ

1/2
y ), which takes

a symmetric form. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of M̃. Since M̃ is a

symmetric matrix, we could have the eigenvalue decomposition as M̃ = U>ΛU , where

U = (U1, · · · , Un)> ∈ Rn×n is an orthogonal matrix and Λ = diag{λ1, · · · , λn}. As a

consequence, we have Y >MY =
∑

i λiζ
2
i , where ζi = U>i Ỹ and ζis are i.i.d. from the

standard sub-Gaussian distribution. It can be verified ζ2
i − 1 satisfies sub-exponential

distribution by Lemma 1. Next, one could easily verify that the sub-exponential

distribution satisfies condition (P) on page 45 of Saulis and Statuleviveccius (2012),

thus we have

P{|m−1(Y >MY )− σ(m)
y | ≥ δ} = P{

∑
i λi(ζ

2
i − 1)| ≥ 2mδ}

≤ c1 exp{−c2(
∑

i λ
2
i )
−1m2δ2} = c1 exp{−c2tr−1(MΣyMΣy)m

2δ2}.

By noticing that tr(MΣyMΣy) = 2{tr(MΣyMΣy) + tr(MΣyM
>Σy)} = 2σ2y, (A.1)

can be obtained.

Proof of (A.2): Let Z = (X>, Y >)> ∈ R2n and M∗ = (0,M ;M>,0) ∈ R(2n)×(2n).

Then we have X>MY = 2−1(Z>M∗Z). Therefore, (A.1) can be readily applied. Let

Σz = cov(Z) = (Σx,Σxy; Σ>xy,Σy) ∈ R(2n)×(2n). It can be verified tr(ΣzM∗ΣzM∗) =

2{tr(ΣxyM
>ΣxyM

>) + tr(ΣxMΣyM
>)}. Consequently, the desired result (A.2) can

be obtained.

Lemma 3. Assume conditions (C1)–(C3) hold for the model (2.4). Let Y and Z

follow the model (2.4) with Σzy = (Z>Z − ĉ−1
y Z>YY>Z)/(NT ) and Σ̃zy = ΣZ −

TN−1c−1
y tr2(S−1)ΣZγγ

>ΣZ, where ĉy = Y>Y and cy = T tr(ΣY ). Then it can be

concluded Σ̃zy is a positive definite matrix and

P (‖Σ−1
zy − Σ̃−1

zy ‖ > ε) ≤ δ∗1y exp
(
− δ∗2yN1−2τTε2

)
+ c∗1yz exp

(
− c∗2yzNTε2

)
(A.3)
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where δ∗1y, δ
∗
2y, c

∗
1yz, and c∗2yz are finite constants, and ‖ · ‖ denotes the Frobenius norm

of a matrix, i.e., ‖M‖ = tr1/2(M>M).

Proof: We separate the proof into three steps. In the first step, we prove that Σ̃zy is

positive definite. Second, we show that

P (‖Σzy − Σ̃zy‖ > ε) ≤ δ1y exp
(
− δ2yN

1−2τTε2
)

+ c1yz exp
(
− c2yzNTε

2
)
, (A.4)

where δ1y, δ2y, c1yz, and c2yz are finite constants. Lastly, we prove the results of (A.3).

Step 1. (Σ̃zy is positive definite) It suffices to prove for any η ∈ Rp,

η>ΣZη − TN−1c−1
y tr2(S−1)(η>ΣZγ)2 > 0. (A.5)

To this end, we derive the upper bound for TN−1c−1
y tr2(S−1)(η>ΣZγ)2. First by Von

Neumann’s trace inequality, we have tr(S−1) ≤
∑N

i=1 σi(S
−1), where σi(M) denotes

the singular value of arbitrary matrix M . It can be further derived {
∑

i σi(S
−1)}2 ≤

N{
∑

i σ
2
i (S

−1)} = N
∑

i λi{S−1(S−1)>} = Ntr(ΣY )/cγe by Cauchy inequality, where

cγe = γ>ΣZγ + σ2
e . In addition, by Cauchy inequality, we have (η>ΣZγ)2 ≤ (η>ΣZη)

(γ>ΣZγ). As a result, we have TN−1c−1
y tr2(S−1)(η>ΣZγ)2 ≤ (η>ΣZη)(γ>ΣZγ)/cγe.

Consequently, we have η>ΣZη−TN−1c−1
y tr2(S−1)(η>ΣZγ)2 ≥ (1−γ>ΣZγ/cγe)(η

>ΣZη) =

σ2
e/cγe(η

>ΣZη) > 0. The desired result (A.5) can be obtained.

Step 2. (Proof (A.4)) It can be shown that P (‖Σzy−Σ̃zy‖ > ε) ≤ P (‖Z>Z/(NT )

−Σz‖ > ε/2) + P (‖ĉ−1
y (NT )−1Z>YY>Z− c−1

y N−1T tr2(S−1)ΣZγγ
>ΣZ‖ > ε/2). Since

we have cov(Zk1 ,Zk2) = σZ,k1k2INT , then we have P (‖Z>Z/(NT ) − ΣZ‖ > ε/2) ≤

c1z exp(−c2zNTε
2), where c1z and c2z are finite constants. Next, note that cov(Y, Zk) =

S−1(γ>ΣZek) and we have P (|ĉy/(NT )− cy/(NT )| > ε) ≤ δ1y exp(−δ2yN
2T/c2yε

2) by

Lemma 2, where c2y = tr(Σ2
Y ), δ1y and δ2y are finite constants. Therefore, it can be de-

rived P (‖ĉ−1
y (NT )−1Z>YY>Z− c−1

y N−1T tr2(S−1)ΣZγγ
>ΣZ‖ > ε/2) ≤ δ1y exp(−δ2yc

2
y
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/(Tc2y)ε
2) + 2c1yz exp{−c2yzNcy/σyzε

2}, where c2y = tr(Σ2
Y ) and σyz = tr(ΣY ) +

tr(S−2). It can be derived c2y ≤ Nλ2
max(ΣY ), cy ≥ Nλmin(ΣY ), and σyz ≤ tr(ΣY ) +

tr{S−1(S−1)>} = c3γtr(ΣY ), where c3γ = 1 + (γ>ΣZγ + σ2
e)
−1. Note λmax(ΣY ) = N τ

and λmin(ΣY ) > τmin by condition (C3). Then (A.4) can be obtained by adjusting the

constants.

Step 3. (Proof of (A.3)) Note Σ−1
zy − Σ̃−1

zy = Σ̃−1
zy (Σ̃zy − Σzy)Σ

−1
zy . Let

∆zy = Σ̃zy−Σzy, λzy = λmax(Σzy), and λ̃zy = λmax(Σ̃zy) Then we have ‖Σ−1
zy −Σ̃−1

zy ‖2 =

tr(Σ−1
zy ∆zyΣ̃

−2
zy ∆zyΣ

−1
zy ) ≥ λ−2

zy λ̃
−2
zy ‖∆zy‖2. Therefore we have P (‖Σ−1

zy − Σ̃−1
zy ‖ > δ) ≤

P{‖∆zy‖ > δλzyλ̃zy}. Suppose δ is small that δ < λ̃zy. Consequently we have

P{‖∆zy‖ > δλzyλ̃zy} ≤ P{‖∆zy‖ > δ(λ̃zy − δ)λ̃zy} + P (λzy < λ̃zy − δ). According to

the Wielandt-Hoffman Theorem (Izenman, 2008), one could obtain that |λzy − λ̃zy| ≤

‖Σzy − Σ̃zy‖2. Therefore it can be implied that P (λzy < λ̃zy − δ) ≤ P (|λzy − λ̃zy| >

δ) ≤ P (‖Σzy − Σ̃zy‖ > δ). Together by (A.4), (A.3) can be obtained.

Lemma 4. Let Y ∈ RNy , X1 ∈ RN1x, and X2 ∈ RN2x are sub-Gaussian random

vectors with cov(Y ) = Σy, cov(X1) = Σ1x, and cov(X2) = Σ2x. In addition, let

M1 ∈ RNy×Ny and M2 ∈ RNy×Ny . Define ξ̂1y = (Y >M1Y )/N1m, ξ̂2y = (Y >M2Y )/N2m,

ξ̂1x = (X>1 X1)/N1x, and ξ̂2x = (X>2 X2)/N2x, where N1m and N2m are normalizing

constants. Accordingly, let µ1y = E(ξ̂1y), µ2y = E(ξ̂2y), µ1x = E(ξ̂1x) > 0, µ2x =

E(ξ̂3x) > 0.

(a) Then for a sufficiently small δ, we then have

P
(∣∣ξ̂−1

1x ξ̂1y − µ−1
1x µ1y

∣∣ > δ
)
≤ ∆1m + ∆1x (A.6)

P
(∣∣ξ̂1y ξ̂2y/(ξ̂1xξ̂2x)− µ1yµ2y/(µ1xµ2x)

∣∣ > δ
)
≤ ∆1m + ∆2m + ∆1x + ∆2x + ∆̃1m + ∆̃2m,

(A.7)

where ∆1m = c1 exp(−c2σ
−1
1mN

2
1mµ

2
1xδ

2), ∆2m = c5 exp(−c6σ
−1
2mN

2
2mµ

2
2xδ

2), ∆1x = c3 exp(

−c4σ
−1
1xN

2
1xµ

2
1x), ∆2x = c7 exp(−c8σ

−1
2xN

2
2xµ

2
2x), ∆̃1m = c1 exp(−c2σ

−1
1mN

2
1mµ

2
1xµ

2
2xµ
−2
2y δ

2),

∆̃2m = c5 exp(−c6σ
−1
2mN

2
2mµ

2
2xµ

2
1xµ
−2
1y δ

2), σ1m = tr(M1ΣyM1Σy) + tr(M1ΣyM
>
1 Σy),
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σ2m = tr(M2ΣyM2Σy) + tr(M2ΣyM
>
2 Σy), σ1x = tr(Σ2

1x), σ2x = tr(Σ2
2x), and cj (1 ≤

j ≤ 8) are finite positive constants.

(b) Let Z = (Zk) ∈ RNy×p, where Zk following sub-Gaussian distribution with E(Zk) =

0 and cov(Zk1 , Zk2) = σz,k1k2INy . In addition, let Σz = (σz,k1k2) ∈ Rp×p and assume

cov(Y, Zk) = (e>k Σzγ)Σzy, where ek ∈ Rp is a p-dimensional zero vector except the

kth element being 1, γ ∈ Rp is a p-dimensional constant vector, and Σzy ∈ RNy×Ny .

Define ξ̂1yz = Z>M1Y/Ny, ξ̂2yz = Z>M2Y/Ny, and accordingly µ1yz = E(ξ̂1yz), µ2yz =

E(ξ̂2yz). In addition, assume Ω̂ ∈ Rp×p be a random matrix and for a sufficiently small

ε > 0, it holds

P (‖Ω̂− Ω‖ > ε) ≤ ∆ω(ε), (A.8)

where ∆ω(ε) is a positive constant related to ε. It is assumed ωmin ≤ λmin(Ω) ≤

λmax(Ω) ≤ ωmax, where ωmin and ωmax are finite positive constants. Then for a suffi-

ciently small δ, we then have

P
(∥∥ξ̂−1

1x Ω̂(ξ̂1yz ξ̂
>
2yz)− µ−1

1x Ω(µ1yzµ
>
2yz)
∥∥ > δ

)
≤∆ω(δ) + ∆ω

( δµ1x

‖µ1yz‖‖µ2yz‖

)
+ ∆x + ∆1yz + ∆2yz, (A.9)

where ∆x = c1x exp(−c2xσ
−1
1xN

2
1xµ

2
1x), ∆1yz = ca1yz exp(−cb1yzN2

yσ
−1
1yzµ1xδ

2), ∆2yz =

ca2yz exp(−cb2yzN2
yσ
−1
2yzµ1xδ

2), σ1yz = tr(M1ΣyM
>
1 )+tr(ΣzyM

>
1 ΣzyM

>
1 ), σ2yz = tr(M2Σy

M>
2 ) + tr(ΣzyM

>
2 ΣzyM

>
2 ), and c1ω, c2ω, c1x, c2x, ca1yz, c

b
1yz, c

a
2yz, c

b
2yz are finite con-

stants.

Proof of (a): For simplicity, we only prove the first inequality of (A.6). The second

one can be obtained by iteratively applying the same technique.

Proof of (A.6). First we have |ξ̂1y/ξ̂1x−µ1y/µ1x| ≤ |ξ̂1y/ξ̂1x−µ1y/ξ̂1x|+|µ1y/ξ̂1x−

µ1y/µ1x|. It can be concluded P (|ξ̂1y/ξ̂1x − µ1y/µ1x| > δ) ≤ P (|ξ̂1y/ξ̂1x − µ1y/ξ̂1x| >

δ/2) + P (|µ1y/ξ̂1x − µ1y/µ1x| > δ/2). We then derive the upper bound for the two
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parts respectively in the following.

Part I. It can be derived

P (|ξ̂1y/ξ̂1x − µ1y/ξ̂1x| > δ/2) = P
( |ξ̂1y − µ1y|

µ1x

µ1x

ξ̂1x

> δ/2
)

≤ P
( |ξ̂1y − µ1y|

µ1x

> δ/4
)

+ P
(µ1x

ξ̂1x

> 2
)

(A.10)

By Lemma 2, it can be derived P (|ξ̂1y − µ1y| > δµ1x/4) ≤ α1 exp(−α2σ
−1
1mN

2
1mµ

2
1xδ

2),

where α1 and α2 are finite constants. Next, we have P (µ1x > 2ξ̂1x) = P{2(ξ̂1x−µ1x) <

−µ1x} ≤ P{|ξ̂1x − µ1x| > 1/2µ1x}. By Lemma 2, we have P{|ξ̂1x − µ1x| > 1/2µ1x} ≤

c3 exp(−c4σ
−1
1xN

2
1xµ

2
1x). By summarizing the results in Part I and Part II and re-

arranging the constants, the desired results in (A.6) can be obtained.

Part II. Without loss of generality, we assume µ1y > 0. Let δ∗ = (2µ1y/µ1x)/(1 +

2µ1y/µ1x)δ. Therefore, we have δ∗ < δ and hence P (|µ1y/ξ̂1x − µ1y/µ1x| > δ/2) ≤

P (|µ1y/ξ̂1x − µ1y/µ1x| > δ∗/2) ≤ P (µ1y/ξ̂1x > δ∗/2 + µ1y/µ1x) + P (µ1y/ξ̂1x < −δ∗/2 +

µ1y/µ1x). Then we have P (µ1y/ξ̂1x > δ∗/2 + µ1y/µ1x) = P (µ1y/ξ̂1x > {1 + δ/(1 +

2µ1y/µ1x)}µ1y/µ1x) = P (ξ̂1x − µ1x < −δ/(1 + 2µ1y/µ1x + δ)µ1x). Similarly we can

obtain P (µ1y/ξ̂1x < −δ∗/2 + µ1y/µ1x) = P (ξ̂1x − µ1x > δµ1x/(1 + 2µ1y/µ1x−δ)).

Consequently we obtain P (|µ1y/ξ̂1x − µ1y/µ1x| > δ/2) ≤ α5 exp(−α6σ
−1
1xN

2
1xµ

2
1xδ

2),

where α5 and α6 are finite constants.

Proof of (A.7). It can be noted that

ξ̂1y ξ̂2y

ξ̂1xξ̂2x

− µ1yµ2y

µ1xµ2x

=
( ξ̂1y

ξ̂1x

− µ1y

µ1x

)( ξ̂2y

ξ̂2x

− µ2y

µ2x

)
+
µ1y

µ1x

( ξ̂2y

ξ̂2x

− µ2y

µ2x

)
+
µ2y

µ2x

( ξ̂1y

ξ̂1x

− µ1y

µ1x

)
.

Consequently, (A.7) can be obtained by applying the same proof technique of (A.6) to

each part separately.

Proof of (b): Let ξ̂∗1yz = ξ̂
−1/2
1x ξ̂1yz and ξ̂∗2yz = ξ̂

−1/2
1x ξ̂2yz. Accordingly, let µ∗1yz =

µ
−1/2
1x µ1yz and µ∗2yz = µ

−1/2
1x µ2yz. In this part, we derive upper bound for P

(∥∥Ω̂(ξ̂∗1yz ξ̂
∗>
2yz)−
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Ω(µ∗1yzµ
∗>
2yz)
∥∥ > δ

)
. Then the results can be obtained by using (A.6). It can be noted

Ω̂(ξ̂∗1yz ξ̂
>
2yz)−Ω(µ∗1yzµ

∗>
2yz) = (Ω̂−Ω)(ξ̂∗1yz ξ̂

>
2yz−µ∗1yzµ∗>2yz)+Ω(ξ̂∗1yz ξ̂

>
2yz−µ∗1yzµ∗>2yz)+(Ω̂−

Ω)µ∗1yzµ
∗>
2yz. Therefore we have

P
(∥∥Ω̂(ξ̂∗1yz ξ̂

>
2yz)− Ω(µ∗1yzµ

∗>
2yz)
∥∥ > δ

)
≤ P (‖(Ω̂− Ω)µ∗1yzµ

∗>
2yz‖ > δ/3)

+ P (‖Ω(ξ̂∗1yz ξ̂
∗>
2yz − µ∗1yzµ∗>2yz)‖ > δ/3) + P (‖(Ω̂− Ω)(ξ̂∗1yz ξ̂

∗>
2yz − µ∗1yzµ∗>2yz)‖ > δ/3).

We next look at the above three terms one by one. Without loss of generality, we

assume µ∗1yzµ
∗>
2yz 6= 0. Then we have ‖(Ω̂ − Ω)µ∗1yzµ

∗>
2yz‖ = (µ∗>2yzµ2yz)

1/2tr1/2{(Ω̂ −

Ω)µ∗1yzµ
∗>
1yz(Ω̂−Ω)} = (µ∗>2yzµ2yz)

1/2{µ∗>1yz(Ω̂−Ω)2µ∗1yz}1/2 ≥ ‖µ∗2yz‖‖µ∗1yz‖|λmin(Ω̂−Ω)|.

Therefore we have P (‖(Ω̂−Ω)µ∗1yzµ
∗>
2yz‖ > δ/3) ≤ P (|λmin(Ω̂−Ω)| > 3−1‖µ∗1yz‖−1‖µ∗2yz‖−1

δ). By (A.8), P (|λmin(Ω̂−Ω)| > 3−1‖µ∗1yz‖−1‖µ∗2yz‖−1δ) ≤ ∆ω(δµ1x‖µ1yz‖−1‖µ2yz‖−1).

Next, let Uyz = ξ̂∗1yz ξ̂
∗>
2yz − µ∗1yzµ

∗>
2yz, where ω∗2 is a positive constant. Then we have

‖ΩUyz‖ = tr1/2{U>yzΩ2Uyz} ≥ λmin(Ω)‖Uyz‖. Therefore we have P (‖ΩUyz‖ > δ/3) ≤

P (‖Uyz‖ > 3−1λ−1
min(Ω)δ). Lastly, for the last term we have P (‖(Ω̂−Ω)Uyz‖ > δ/3) ≤

P (‖Ω̂− Ω‖ >
√
δ/3) + P (‖Uyz‖ >

√
δ/3). Consequently, it suffices to derive the rate

of

P (‖ξ̂∗1yz ξ̂∗>2yz − µ∗1yzµ∗>2yz‖ > δ1), (A.11)

where δ1 = min{
√
δ/3, δ/(3λmin(Ω))}. In other words, it suffices to derive P (|η>ξ̂∗1yz ξ̂∗>2yz

η − η>µ∗1yzµ
∗>
2yzη| > δ1) for any η ∈ Rp with ‖η‖ = 1. By similar arguments, it

can be derived that P (|η>ξ̂∗1yz ξ̂∗>2yzη − η>µ∗1yzµ
∗>
2yzη| > δ1) ≤ P (|η>ξ̂∗1yz − η>µ∗1yz| >

δ2) + P (|η>ξ̂∗2yz − η>µ∗2yz| > δ2), where δ2 is a finite positive constant. Note η>ξ̂1yz =

(η>Z>M1Y )/Ny. Let Y = ((Zη)>, Y >)> ∈ R(2Ny). We then have η>ξ̂1yz = Y>M∗
1Y/2,

where M∗
1 = (0,M1;M>

1 , 0) ∈ R(2Ny)×(2Ny). It can be derived ΣY = cov(Y) =

(σηINy ,Σ
η
zy; Ση>

zy ,ΣY ), where ση = η>Σzη and Ση
zy = cov(Zη, Y ) = (η>ΣZγ)Σzy.

We then have tr(ΣYM
∗
1 ΣYM

∗
1 ) = 2σηtr(M1ΣYM

>
1 ) + 2(η>ΣZγ)2tr(ΣzyM

>
1 ΣzyM

>
1 ).

Moreover, we have η>µ1yz = cov(M1Y,Zη)/Ny = (η>ΣZγ)tr(M1Σzy)/Ny. Then by
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(A.2) of Lemma 2 and (A.6) of Lemma 4, we have P (|η>ξ̂∗1yz − η>µ∗1yz| > δ2) ≤

c∗1yz exp(−c2yzN
2
yσ
−1
1yzµ1xδ

2
2) + ∆1x. Consequently, (A.9) can be obtained.

Lemma 5. Let Σ ∈ Rm×m, and Σ̂ be its estimate. Assume for any ε > 0, Σ and Σ̂

satisfy

τmin ≤ λmin(Σ) ≤ λmax(Σ) ≤ τmax, (A.12)

and P
{∥∥Σ̂− Σ

∥∥
∞ ≥ ε

}
≤ c1 exp(−c2Tε

2 + c3 logm) (A.13)

where 0 < τmin < τmax, c1, c2, c3 are positive constants. In addition, if m = O(T δ1)

with 0 ≤ δ1 < 1/2, then we have for a positive constant c4,

P
(

sup
‖r‖=1

∣∣r>(Σ̂− Σ
)
r
∣∣ > ε

)
≤ c1 exp(−c2Tm

−2ε2 + c3 logm+ c4m) (A.14)

and τmin/2 ≤ λmin(Σ̂) ≤ λmax(Σ̂) ≤ 2τmax with probability tending to 1, (A.15)

where c1, c2, c3 are positive constants.

Proof: Note that by (A.12) and (A.14), the conclusion (A.15) is implied by the

condition that m = O(T δ1) with 0 ≤ δ1 < 1/2. Thus, let us prove (A.14).

For any ‖r‖ = 1, we have

|r>(Σ̂− Σ)r| ≤
∑
j1,j2

|rj1rj2||σ̂j1j2 − σj1j2|

≤ ‖Σ̂− Σ‖∞
∑
j1,j2

|rj1rj2 | = ‖Σ̂− Σ‖∞(
m∑
j=1

|rj|)2

= ‖Σ̂− Σ‖∞‖r‖2
1 ≤ m‖Σ̂− Σ‖∞

Therefore, we have P
{∣∣r>{Σ̂−Σ

}
r
∣∣ > ε

}
≤ P{‖Σ̂−Σ‖∞ > ε/m} ≤ c1 exp(−c2Tm

−2ε2+

c3 logm). Lastly, we apply the discretization argument (Lemma F.2 of Basu et al.

8



(2015)) and then the result (A.14) could be obtained.

Appendix A.2: Proof of Proposition 1

It suffices to show for a sufficiently small δ1, we have P
{

maxj
∣∣R̂2

j−R2
j

∣∣ > δ1

}
→ 0.

We first derive the form of R̂2
j . To this end, we first give (Ỹ>Ỹ)−1. Let ĉy = Y>Y and

Ωzy = (Z>Z− ĉ−1
y Z>YY>Z)−1. We then have

(Ỹ>Ỹ)−1 =

 ĉ−1
y + ĉ−2

y Y>ZΩzyZ>Y −ĉ−1
y Y>ZΩzy

−ĉ−1
y ΩzyZ>Y Ωzy

 . (A.16)

It can be noted X
(j)
t = W·jYjt = (W·je

>
j )Yt, where X

(j)
t is the jth column of Xt. Let

Mj = IT ⊗ (W·je
>
j ), ξ1j = X>j Xj, and ξ2j = Y>MjY, where ej ∈ RN is a vector with

the jth element being 1 and others being 0. Define

R̂1j = ξ−1
1j ĉ
−1
y ξ2

2j, R̂2j = ξ−1
1j (Y>MjZΩzyZ>M>j Y),

R̂3j = −2ξ−1
1j ĉ
−1
y ξ2j(Y>MjZΩzyZ>Y), R̂4j = ξ−1

1j ĉ
−2
y (Y>ZΩzyZ>Y).

Consequently, R̂2
j can be expressed as R̂2

j = R̂1j + R̂2j + R̂3j + R̂4j. Accordingly, define

R1j = (κ1jσY,jjcy)
−1κ2

2j, R2j = (Nκ1jσY,jj)
−1κ2

3jcz, R3j = (Nκ1jσY,jjc
2
y)
−1(κ2

2jc
2
scz),

and R4j = −2(Nκ1jσY,jjcy)
−1κ2jκ3jcscz. Hence we have R2

j = R1j + R2j + R3j + R4j.

Therefore we have

P
{∣∣R̂2

j −R2
j

∣∣ > δ1

}
≤

4∑
k=1

P
{∣∣R̂kj −Rkj

∣∣ > δ1/4
}
. (A.17)

It suffices to show
∑N

j=1 P
{∣∣R̂kj − Rkj

∣∣ > δ1/4
}
→ 0 for 1 ≤ k ≤ 4. For the sake of

similarity, we prove the case for k = 1, 2 in the following two parts.

Part 1. (Proof of
∑N

j=1 P
{∣∣R̂1j−R1j

∣∣ > δ1/4
}
→ 0). Let R̂∗1j = (NT 2)−1(W>

·jW·j)
−1

(Y>MjY)2, σ̂Y,jj = T−1
∑

t Y
2
jt, and σ̂2

Y = Y>Y/(NT ). Accordingly, set R∗1j =

9



(NT 2)−1κ−1
1j κ

2
2j, σ

2
Y = N−1tr(ΣY ). Consequently we have |R̂1j−R1j| = |σ̂−1

Y,jjσ̂
−2
Y R̂∗1j−

σ−1
Y,jjσ

−2
Y R∗1j|, where R̂∗1j = {(T−1N−1/2κ

−1/2
1j )(Y>MjY)}2. Note that we have R̂1j =

(R̂
∗1/2
1j /σ̂Y,jj)(R̂

∗1/2
1j /σ̂2

Y ). Therefore by Lemma 4,

P (|σ̂−1
Y,jjσ̂

−2
Y R̂∗1j − σ−1

Y,jjσ
−2
Y R∗1j| > δ1/4) ≤ c1 exp(−c2TNκ1jσ

−1
1mσ

2
Y,jjδ

2
1)︸ ︷︷ ︸

:=∆1

+ c3 exp(−c4TNκ1jσ
−1
1mσ

4
Y δ

2
1)︸ ︷︷ ︸

:=∆2

+ 2c5 exp(−c6TNκ1jσ
−1
1mσ

4
Y σ

2
Y,jjR

∗−1
1j δ2

1)︸ ︷︷ ︸
:=∆3

+ c7 exp{−c8T tr−1(Σ2
Y )tr2(ΣY )}︸ ︷︷ ︸

:=∆4

+ c9 exp(−c10T )︸ ︷︷ ︸
:=∆5

where σ1m = (W>
·j ΣY ej)

2 + (W>
·j ΣYW·j)σY,jj, cjs (1 ≤ j ≤ 6) are finite constants.

Further it can be calculated that σ1m ≤ 2(W>
·j ΣYW·j)σY,jj ≤ 2(W>

·jW·j)σY,jjλmax(ΣY ).

Moreover, we have and σY,jj ≥ λmin(ΣY ) and σ2
Y ≥ λmin(ΣY ). Therefore, it can

be shown that ∆1 ≤ c1 exp(−c2TNτ
−1
maxτminδ

2
1) (by (C3)). Similarly, we have ∆2 ≤

c3 exp(−c4TNτ
−2
maxτ

2
minδ

2
1), ∆3 ≤ c5 exp(−c6TNτ

−2
maxτ

2
minδ

2
1), and ∆4 ≤ c7 exp(−c8TNτ

−2
max

τ 2
minδ

2
1). Consequently, it can be derived P (|σ̂−1

Y,jjσ̂
−2
Y R̂∗1j − σ−1

Y,jjσ
−2
Y R∗1j| > δ1/4) ≤

α1 exp(−α2TN
1−2τδ2

1) + α3 exp(−α4Tδ
2
1), where αj for 1 ≤ j ≤ 4 are finite con-

stants. Note that τ < 1/2 and T = O((N2(1−ζ) logN)ξ) for ξ > 1, we then have∑N
j=1 P (|R̂1j −R1j| > δ1/4)→ 0.

Part 2. (Proof of
∑N

j=1 P
{∣∣R̂2j −R2j

∣∣ > δ1/4
}
→ 0) We re-write R̂2j as

ξ−1
1j Y>MjZΩzyZ>M>j Y = ξ−1

1j tr{Ωzy(Z>M>j YY>MjZ)} = tr
(
σ̂−1
Y,jjΣ

−1
zy R̂

∗
2j

)
(A.18)

where Σzy = Ω−1
zy /(NT ), R̂∗2j = κ−1

1j (NT 2)−1(Z>M>j YY>MjZ). Note we have E(Z>M>j

Y) = tr(M>j S−1)ΣZγ = T (W>
·j S
−1ej)ΣZγ = Tκ3jΣZγ. Consequently, one could

verify that R2j = tr(σ−1
Y,jjΣ̂

−1
zy R

∗
2j), where R∗2j = κ−1

1j N
−1κ2

3jΣZγγ
>ΣZ . Next, we

apply (A.9) to obtain the results that P{‖σ̂−1
Y,jjΣ

−1
zy R̂

∗
2j − σ−1

Y,jjΣ
−1
zy R

∗
2j‖ > δ1/4} ≤

∆ω(δ1) + ∆ω(σY,jjκ1jκ
−2
3j N‖ΣZγ‖−2δ1) + ∆x + ∆1yz + ∆2yz, where in this case we have

10



∆1yz = ∆2yz. Note here we have P (‖NTΩzy − Σzy‖ > ε) ≤ ∆ω(δ1) by Lemma 3,

where ∆ω(δ1) = δ∗1y exp
(
− δ∗2yN

1−2τTδ2
1

)
+ c∗1yz exp

(
− c∗2yzNTδ

2
1

)
→ 0. It can be

derived κ2
3j ≤ e>j S

−1S−1>ej(W
>
·jW·j) = σY,jjκ1j/cγe. Therefore we have σY,jjκ1jκ

−2
3j ≥

cγe. As a result, we have ∆ω(σY,jjκ1jκ
−2
3j N‖ΣZγ‖−2δ1) ≤ ∆ω(cγe‖ΣZγ‖−2Nδ1) →

0. Next, we have ∆x = c1x exp(−c2xσ
−1
1x Tµ

2
1xδ

2
1), where σ1x = σ2

Y,jj and µ1x =

σY,jj. Consequently, we have ∆x = c1x exp(−c2xTδ
2
1). Next, cov(Zk,Y) = (IT ⊗

S−1)(e>k ΣZγ), where ek ∈ Rp is a vector with the kth element being 1 and other-

s being 0. Let ΣY = IT ⊗ ΣY . Consequently, we have Σzy = IT ⊗ S−1 and ∆1yz =

∆2yz = cayz exp(−cbyzNT 2κ1jσ
−1
yz µ1xδ

2), where σyz = tr(M>j ΣYMj)+tr(ΣzyMjΣzyMj) =

T (W>
·j ΣY ej)

2+T (e>j S
−1W·j)

2 ≤ T (W>
·jW·j)(e

>
j Σ2

Y ej)+T (W>
·jW·j){e>j S−1(S−1)>ej}. It

can be further derived T (W>
·jW·j)(e

>
j Σ2

Y ej) ≤ κ1jTNλ
2
max(ΣY ) and e>j S

−1(S−1)>ej =

c−1
γe e
>
j ΣY ej ≤ c−1

γe λmax(ΣY ). Therefore, σyz ≤ κ1jTN{λ2
max(ΣY ) + c−1

γe λmax(ΣY )} In ad-

dition, we have σY,jj ≥ λmin(ΣY ). Consequently, it can be derived ∆1yz ≤ ca∗yz exp(−cb∗yz

N1−2τTδ2
1) by condition (C3), where ca∗yz and cb∗yz are finite constants. Lastly, note by

condition (C3) we have τ < 1/2 and T = O((N2(1−ζ) logN)ξ) with ξ > 1, we have∑N
j=1 P (|R̂2j −R2j| > δ1/4)→ 0. This completes the proof.

Appendix A.3: Proof of Theorem 1

In this proof, we separate the proof into three steps. In the first step, we show that

the total amount of signal
∑N

j=1R
2
j is of O(N τ ). Second, we prove the set M can be

covered by M̂ = {1 ≤ j ≤ N : R̂2
j > cmin/2}. Lastly, we show that the size of M̂ can

be bounded by mmax, which takes order of O(N1+τ−ζ).

Step 1. We first prove that
∑N

j=1 R
2
j ≤ Cr = O(N τ ). It suffices to show the upper

bound of each term in (2.7). Specifically, we reconsider that R1j = (κ1jσY,jjcy)
−1κ2

2j,

R2j = (Nκ1jσY,jj)
−1κ2

3jcz, R3j = (Nκ1jσY,jjc
2
y)
−1(κ2

2jc
2
scz), andR4j = −2(Nκ1jσY,jjcy)

−1

κ2jκ3jcscz, and we have R2
j = R1j +R2j +R3j +R4j. We next investigate each of them

11



separately. By Cauchy inequality we have

cy ≥ λmin(ΣY ), σY,jj ≥ λmin(ΣY ) (A.19)

|κ2j| ≤ (e>j ΣY ej)
1/2(W>

·j ΣYW·j)
1/2 ≤ σ

1/2
Y,jjκ

1/2
1j λ

1/2
max(ΣY ), (A.20)

cs ≤ Nλ1/2
max{S−1(S−1)>} = Nλ1/2

max(ΣY )/cγe, (A.21)

|κ3j| ≤ [e>j {S−1(S−1)>}ej]1/2(W>
·jW·j)

1/2 = σ
1/2
Y,jjκ

1/2
1j /c

1/2
γe (A.22)

It can be shown that max{|R1j|, |R2j|, |R3j|, |R4j|} ≤ crλmax(ΣY )/N , where cr is a

finite positive constant. For simplicity, we only verify R1j for illustration propose. It

can be derived |R1j| ≤ (e>j ΣY ej)(W
>
·j ΣYW·j)/(κ1jσY,jjcy) ≤ λmax(ΣY )/{Nλmin(ΣY )}

by (A.19) and (A.20). Consequently, by condition (C2), we have
∑

j R
2
j ≤ Cr, where

Cr = O(N τ ).

Step 2. Recall cmin = minj∈MR2
j and M ⊂ {j : R2

j ≥ cmin}. Define M̂ =

{j : R̂2
j ≥ cmin/2}. In this step, we show that M̂ should uniformly cover M with

probability tending to 1. Otherwise, there must exist at least one j∗ ∈M not included

in M̂. By the definition, we know R̂2
j∗ < 2−1cmin. In the meanwhile, if j∗ ∈ M,

we should have R2
j∗ ≥ cmin. This implies that |R̂2

j − R2
j | > 2−1cmin. As a result,

if M 6⊂ M̂, it then could be concluded maxi |R̂2
j − R2

j | > 2−1cmin. We then have

P (M 6⊂ M̂) ≤ P (maxi |R̂2
j − R2

j | > cmin/2). By condition (C2), we have cmin ≥ c

asymptotically, where c = N ζ−1. Then the desired results can be obtained by the

conclusion of Proposition 1.

Step 3. Lastly, we verify that the size of M̂ can be uniformly bounded. By the

first step, we have
∑N

j=1R
2
j ≤ Cr = O(N τ ). DefineMs = {j : R2

j > cmin/4}. It can be

obtained Cr ≥
∑

j∈Ms
R2
j ≥ |Ms|cmin/4. Then we have |Ms| ≤ 4Cr/cmin

def
= mmax. By

condition (C3) and the result in Step 1, it can be concluded that mmax = O(N1+τ−ζ).

If |M̂| > |Ms|, we must have M̂ 6⊂ Ms. This implies there exists at least one

j ∈ M̂ with R̂2
j ≥ cmin/2 but j 6∈ Ms with R2

j ≤ cmin/4. Consequently we have

12



maxj |R̂2
j −R2

j | ≥ 4−1cmin. It can be concluded P (|M̂| > mmax) ≤ P (maxj |R̂2
j −R2

j | ≥

4−1cmin). By Proposition 1, we have P (maxi |R̂2
j − R2

j | ≥ 4−1cmin) → 0. Immediately

we know P (|M̂| ≤ mmax)→ 1 as N →∞.

Appendix A.4: Proof of Proposition 2

Note the form of R2
j is given in (2.7) and recall R2

j = R1j+R2j+R3j+R4j. It can be

derived R2j+R3j+R4j = czN
−1(csκ2j/cy−κ3j)

2. Therefore, we have R2
j ≥ R1j. It then

suffices to derive the order of R1j. Before we go into details, we define some notations.

For two arbitrary matrices M1 = (m1,ij) ∈ RN1×N2 and M2 = (m2,ij) ∈ RN1×N2 , define

M1 < M2 if m1,ij ≥ m2,ij for 1 ≤ i ≤ N1 and 1 ≤ j ≤ N2. Similarly, we could define

the notation “4”. In what follows, we first derive the lower bound of R1j for j ∈ M

as R1j ≥ (κ1jσY,jjcy)
−1κ2

5j, where

κ5j = e>j WD(I −WD)−1(I −DW>)−1DW>W·j. (A.23)

Then we discuss the order of the lower bound.

Step 1. (R1j ≥ (κ1jσY,jjcy)
−1κ2

5j) First, we investigate the order of κ2j. By

performing a Taylor’s expansion on ΣY , we have ΣY = I + (I −WD)−1WD + (I −

DW>)−1DW>+WD(I−WD)−1(I−DW>)−1DW>. One can easily verify that κ2j =

e>j ΣYW·j = e>j WD(I−WD)−1W·j+e
>
j DW

>(I−DW>)−1W·j+e
>
j WD(I−WD)−1(I−

DW>)−1DW>W·j = κ3j + κ4j + κ5j due to e>j W·j = 0, where κ4j = e>j DW
>(I −

DW>)−1W·j and κ5j defined in (A.23). Due to that dmin > 0, we have κ3j > 0,

κ4j > 0, and κ5j > 0. Therefore, we have R1j = (κ1jσY,jjcy)
−1κ2

2j ≥ (κ1jσY,jjcy)
−1κ2

5j.

It then suffices to derive the order of κ5j.

Step 2. (The order of (κ1jσY,jjcy)
−1κ2

5j) Without loss of generality, we assume

the first s elements of d are nonzero. Assume cγe = 1 for simplification in the following.

Note κ5j can be written as κ5j = (W>
j·D)(ΣY )(DW>W·j), where Wj· denotes the jth
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row vector of W . It can be easily verified that W>
j·D < 0 and DW>W·j < 0. We

next prove that ΣY < 0. By applying Taylor’s expansion on ΣY , we have ΣY =

{
∑∞

k=0(WD)k}{
∑∞

k=0(DW>)k}. It can be noted under the assumption of Proposition

2 that dmin > 0, we will have all the elements in ΣY to satisfy (WD)k1(DW>)k2 < 0.

Then it can be shown the elementwise lower bound of W>
j·D and DW>W·j are W>

j·D <

dminW
>
j· Ĩs, and DW>W·j < c∗wD1 < c∗wdminĨs1N , where c∗w = minj∈M(W>

·jW·j), dmin =

minj∈M dj, and Ĩs = diag(1s,0N−s) ∈ RN×N . Consequently, we have

κ5j ≥ c∗wd
2
min(W>

j· ĨsΣY Ĩs1N) ≥ c∗wd
2
min(W>

j· ĨsΣY ĨsWj·)

≥ c∗wd
2
min(W>

j· Ĩsdiag(ΣY )ĨsWj·) ≥ c∗wc
2
wd

2
min min

j∈M
σY,jj,

where the second inequality is due to 1N < Wj· and the last one is because W>
j· ĨsWj· ≥

c2
w by condition (2.12). For j ∈ M, we have c1N

ζ ≤ min{c∗w, κ1j} ≤ max{c∗w, κ1j} ≤

c2N
ζ by (2.10). Moreover, we have c3N

−1tr(ΣY ) ≤ minj∈M σY,jj ≤ maxj∈M σY,jj ≤

c4N
−1tr(ΣY ) by (2.11). Consequently, we have (κ1jσY,jjcy)

−1κ2
5j ≥ c2

1c
−1
2 c4c

−2
3 c4

wd
4
minN

ζ−1.

Consequently, the desired results can be obtained.

Appendix A.5: Matrix Forms and Notations

Denote M·j to be the jth column vector of an arbitrary matrix M . The form of Σ2

is given by

Σ2 =

 Σ2d Σ2dγ

Σ>2dγ Σ2γ

 , (A.24)

Σ2d = (Σ2d,j1j2) ∈ Rm×m, Σ2dγ = (Σ2djγ : 1 ≤ j ≤ m) ∈ Rm×p with

Σ2d,j1j2 = lim
N→∞

{N−1δj1δj2 + σ−2
e N−1W>

·j1W·j2(e
>
j1

ΣY ej2)} (A.25)

Σ2djγ = 0, Σ2γ = σ−2
e ΣZ . (A.26)
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where δj = e>j S
−1
MW·j. The form of Σ1 is given as

Σ1 = Σ2 + ∆Σ, where ∆Σ =

 ∆̃d 0m,p

0p,m 0p,p

 , (A.27)

where 0n1,n2 denotes a n1 × n2 zero matrix. Here ∆̃d = (∆d,j1j2) and ∆d,j1j2 =

limN→∞{N−1tr{diag(W·j1e
>
j1
S−1
M )diag(W·j2e

>
j2
S−1
M )}(κ4 − 3σ4

e)/σ
4
e}, where κ4 = Eε4

it.

Appendix A.6: Proof of Theorem 2

The proof is separated into the following two steps. In the first step, we prove that

θ̂M is consistent with the rate αNT =
√

(NT )−1/2m1/2. In the second step, for each

parameter d̂j (j ∈M) and γ̂, we show that they are asymptotic normal.

Step 1. To establish the consistency result, we follow Fan and Li (2001) to prove

that for ε > 0, there exists a constant C > 0 such that

lim
min{N,T}→∞

P
{

sup
‖u‖=C

`(θM + αNTu) < `(θM)
}
≥ 1− ε. (A.28)

It is implied by (A.28) with probability at least 1−ε, there exists a local optimizer θ̂M in

the ball {θM+CαNTu : ‖u‖ ≤ 1}. Consequently, we will have ‖θ̂M−θM‖ = Op(αNT ).

Let ˙̀(θM) = ∂`(θM)/∂θM ∈ Rm and ῭(θM) = ∂2`(θM)/∂θM∂θ
>
M ∈ Rm×m be the

first and second order derivatives of `(θM) with respect to θM. We apply the Taylor’s

expansion to obtain that,

sup
‖u‖=C

{
`(θM + CαNTu)− `(θM)

}
= sup
‖u‖=C

{
CαNT ˙̀>(θM)u+

1

2
C2α2

NTu
> ῭(θM)u+ op(m)

}
,

≤ C‖αNT ˙̀(θM)‖ − 2−1C2mλmin{−(NT )−1 ῭(θM)}+ op(m). (A.29)

We then prove that (A.29) is asymptotically negative with probability 1.

15



Denote ˙̀
d(θM) = ∂`(θM)/∂dM ∈ Rm and ˙̀

γ(θM) = ∂`(θM)/∂γ ∈ Rp. In addition,

denote ῭
d(θM) = (῭

dj1dj2
(θM)) = ∂2`(θM)/∂dM∂d

>
M ∈ Rm×m, ῭

dγ(θM) = (῭
djγ)

> =

∂2`(θM)/∂dM∂γ
> ∈ Rm×p, and ῭

γ(θM) = ∂2`(θM)/∂γ∂γ> ∈ Rp×p. We then give the

expressions of ˙̀(θM) and ῭(θM) in the following as

˙̀
dj(θM) = −Tδj + σ−2

e ∆j, (A.30)

˙̀
γ(θM) = σ−2

e

T∑
t=1

Z>t (SYt − Ztγ), (A.31)

where δj = e>j S
−1W·j, ∆j =

∑T
t=1(SYt − Ztγ)>(W·jYjt), and

῭
dj1dj2

(θM) = −Tδj1δj2 − σ−2
e

T∑
t=1

(W>
·j1W·j2Yj1tYj2t), (A.32)

῭
djγ(θM) = −σ−2

e

T∑
t=1

Z>t W·jYjt,
῭
γ(θM) = −σ−2

e

T∑
t=1

Z>t Zt.

Next, we prove two important results: (1) αNT ˙̀
dj(θM) = Op(

√
m) and αNT ˙̀

γ(θM) =

Op(
√
m); (2) P{‖ − (NT )−1 ῭(θM) − Σ2‖∞ > ε0} → 0 for arbitrary ε0 > 0, where

Σ2 is given by (A.24). Next, we separate the proof of Step 1 into 3 parts in the

following. In Step 1.1, we prove (1), in Step 1.2, we prove (2), and Step 1.3, we

prove (3) λmin(Σ2) > τ0, where τ0 > 0 is a constant. Then by applying Lemma 5

we have λmin(−(NT )−1 ῭(θM)) > τ0/2. Consequently, by choosing C large enough, we

could have (A.29) is negative with probability tending to 1. This completes the proof

of Step 1.

Step 1.1. We firstly look at (A.30). Note that E(∆j) = T tr(Weje
>
j S
−1) =

Tδj. Therefore we have E{ ˙̀
dj(θM)} = 0. In addition, note that Zt and Et fol-

low sub-Gaussian distribution and are independent over 1 ≤ t ≤ T . Then we have

var{αNT ˙̀
dj(θM)} ≤ cα2

NTTσ
2
etr{Weje

>
j S
−1S>−1eje

>
j W

>} ≤ c1mN
−1(e>j ΣY ej)(W

>
·jW·j)

≤ c1mλmax(ΣY )(N−1W>
·jW·j) = O(m), which is due to max{N−1W>

·jW·j, λmax(ΣY )} =

O(1) by (C5). Consequently we have αNT ˙̀
dj(θM) = Op(

√
m). One could similarly ver-
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ify that αNT ˙̀
γ(θM) = Op(

√
m), which is omitted here to save space.

Step 1.2. It suffices to show for any ε0 > 0

P
{∥∥− (NT )−1 ῭

d(θM)− Σ2d

∥∥
∞ > ε0

}
→ 0 (A.33)

P
{∥∥− α2

NT
῭
dγ(θM)

∥∥
∞ > ε0

}
→ 0 (A.34)

and −(NT )−1 ῭
γ(θM) →p σ

−2
e ΣZ . Due to the similarity, we only prove (A.33) in the

following. It suffices to show that

P
{

max
j1,j2∈M

∣∣∣∑tW
>
·j1W·j2Yj1tYj2t

NTσ2
e

−
W>
·j1W·j2ΣY,j1j2

Nσ2
e

∣∣∣ > ε1

}
→ 0, (A.35)

where ε1 = ε0/3. Denote κj1j2 = limN→∞N
−1W>

·j1W·j2 . By (C5), we have

κj1j2 ≤ lim
N→∞

N−1(W>
·j1W·j1)

1/2(W>
·j2W·j2)

1/2 ≤ λmax(WM) <∞.

By Lemma 2, we have that

pd,j1j2
def
=P

{
κj1j2σ

−2
e |T−1

∑
t

Yj1tYj2t − ΣY,j1j2 | > ε1
}

≤ c1 exp{−c2σ
−1
y,j1j2

Tε21} ≤ c1 exp{−c2λ
−2
max(ΣY,M)Tε21}.

for arbitrary positive ε1, where σy,j1j2 = ΣY,j1j2ΣY,j2j1 + ΣY,j1j1ΣY,j2j2 , c1, c2 are finite

positive constants. By (C5), we have λmax(ΣY,M) ≤ τ2 < ∞. Therefore we have

P
{∥∥− (NT )−1 ῭

d(θM)− Σ2d

∥∥
∞ > ε1

}
≤
∑

j1,j2
pd,j1j2 ≤ m2c1 exp(−c2λ

−2
max(ΣY )Tε21)

→ 0 due to log(m) = o(T ).

Step 1.3. Note that we have λmin(ΣZ) > 0, then we only need to prove that

λmin(Σ2d) > τ0 > 0. It suffices to show that for any η = (ηj)
> ∈ Rm, we have

N−1
∑
j1,j2

ηj1δj1ηj2δj2 + σ−2
e N−1

∑
j1,j2

ηj1ηj2W
>
·j1W·j2ΣY,j1j2 > τ0 > 0, (A.36)
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where τ0 is a positive constant. One should note that for the first part of (A.36)

we have
∑

j1,j2
ηj1δj1ηj2δj2 = (

∑
j ηjδj)

2 ≥ 0. Let W = W>W/N and WM ∈ Rm×m

denote the submatrix of W with row and column indexes in M. By Hiai and Lin

(2017), we have
∏m

j=1 λj(WM ◦ ΣY,M) ≥
∏m

j=1 λj(WMΣY,M) ≥ λmmin(WM)λmmin(ΣY,M).

Since we have min{λmin(WM), λmin(ΣY,M)} ≥ τ1 > 0 and λmax(WM ◦ ΣY,M) ≤

maxj1,j2(W
>
·j1W·j2) max‖η‖=1(η>|ΣY,M|eη) ≤ λmax(WM)λmax(|ΣY,M|e) < ∞ by Condi-

tion (3.2), we could conclude that λmin(WM ◦ ΣY,M) ≥ τ0 This proves (A.36).

Step 2. The asymptotic normality of γ̂ is trivial by noting that (NT )−1/2Σ−1
2γ

˙̀
γ(θM)

→d N(0, σ2
eΣ
−1
Z ) and then use the Slutsky’s Theorem. In the following we prove the

asymptotic normality for d̂i. Let η(i) = e>i Σ̂−1
2d ∈ Rm, where Σ̂2d = −(NT )−1 ῭(θM). It

suffices to show (NT )−1/2η(i)> ˙̀
d(θM)→d N(0, σ2

i ). For convenience, we omit the index

i in η(i) and write η(i) as η = (ηj) in the following. Note that (NT )−1/2η(i)> ˙̀
d(θM) =

(NT )−1/2e>i Σ−1
2d

˙̀
d(θM)+(NT )−1/2e>i (Σ̂−1

2d −Σ−1
2d ) ˙̀

d(θM). We separate the goals into t-

wo steps: (1) we prove (NT )−1/2e>i (Σ̂−1
2d −Σ−1

2d ) ˙̀
d(θM) = op(1); and (2) (NT )−1/2e>i Σ−1

2d

˙̀
d(θM)→d N(0, σ2

i ).

Step 2.1. We could write (NT )−1/2e>i (Σ̂−1
2d −Σ−1

2d ) ˙̀
d(θM) = (NT )−1/2e>i Σ̂−1

2d (Σ̂2d−

Σ2d)Σ
−1
2d

˙̀
d(θM). By the Cauchy’s inequality, one could derive that

(NT )−1/2
∣∣e>i Σ̂−1

2d (Σ̂2d − Σ2d)Σ
−1
2d

˙̀
d(θM)

∣∣ ≤ √NT ∣∣λ1

{
Σ̂−1

2d (Σ̂2d − Σ2d)Σ
−1
2d

}∣∣∥∥ ˙̀
d(θM)

∥∥
≤ (NT )−1/2

∣∣λ1

(
Σ̂2d − Σ2d

)∣∣λ−1
min(Σ̂2d)λ

−1
min(Σ2d)

∥∥ ˙̀(θM)
∥∥,

where λ1(M) denotes the eigenvalue with largest absolute value. From the Step 1 we

know that (NT )−1/2‖ ˙̀(θM)‖ = Op(
√
m). Next, by (A.14) we know that

P
(

sup
‖r‖=1

∣∣r>(Σ̂− Σ)r
∣∣ > ε/

√
m
)
≤ c1 exp(−c2Tm

−3ε2 + c3 logm+ c4m).

Since we have m = o(T δ1) with 0 ≤ δ1 < 1/4, it could be concluded
∣∣λ1

(
Σ̂2d−Σ2d

)∣∣ =

op(1/
√
m). This leads to the result that (NT )−1/2e>i (Σ̂−1

2d − Σ−1
2d ) ˙̀

d(θM) = op(1).
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Step 2.2. One could write ˙̀
dj(θM) as

˙̀
dj(θM) = −Tδj + σ−2

e

T∑
t=1

E>t {Weje
>
j S
−1(Et + Ztγ)}

= −Tδj + σ−2
e

T∑
t=1

E>t Weje
>
j S
−1Et + σ−2

e

T∑
t=1

E>t (Weje
>
j S
−1)Ztγ,

def
= −Tδj +

∑
t

E>t MjEt +
∑
t

E>t Uj(Ztγ). (A.37)

One could verify that limmin(N,T )→∞ var{(NT )−1/2 ˙̀
d(θM)} → Σ1, where Σ1 is given by

(A.27). It can be derived η> ˙̀
d(θM) = −T

∑
j ηjδj+

∑
t

∑
j E>t MjηjEt+

∑
t

∑
j EtUjηj(Ztγ).

Let Mη =
∑

jMjηj, Uη =
∑

j Ujηj, and Mη = |Mη|e, Uη = |Uη|e. Since {Et} is in-

dependent over 1 ≤ t ≤ T , then by the central limit theorem for the linear-quadratic

forms (Zhu et al., 2018), it suffices to show

T−1N−2tr
{
MηM>ηMηM>η

}
→ 0 (A.38)

T−1N−1λmax(UηU>η )→ 0 (A.39)

First we prove (A.38). It could be derived Mη 4
∑

j |ηj||Weje
>
j S
−1|e

def
=
∑

j Mηj.

It suffices to show T−1N−2
∑

j1,j2,j3,j4
|ηj1ηj2ηj3ηj4|tr{Mηj1M>ηj2Mηj3M>ηj4} → 0. Let

ηj1j2j3j4 = ηj1ηj2ηj3ηj4 . It can be derived

T−1N−2
∑

j1,j2,j3,j4

|ηj1ηj2ηj3ηj4|tr{Mηj1M>ηj2Mηj3M>ηj4}

≤ 1

N2T

∑
j1,j2,j3,j4

|ηj1j2j3j4|(W>
·j2W·j3)(W

>
·j1W·j4){e

>
j1
|S−1|e|S>−1|eej2}{e>j3|S

−1|e|S>−1|eej4}

≤ 1

N2T

∑
j1,j2,j3,j4

|ηj1j2j3j4|
4∏

k=1

(W>
·jkW·jk)1/2(e>jk |S

−1|e|S>−1|eejk)1/2

≤ σ−2
Y T−1λ2

max(WM)λ2
max(ΣY,M)→ 0 (A.40)

as min{T,N} → ∞, where the second inequality is due to the Cauchy inequality, and

the last one is due to
∑

j1,j2,j3,j4
|ηj1ηj2ηj3ηj4| ≤

∑
j1,j2
|ηj2ηj2|{

∑
j3,j4

(η2
j3

+ η2
j4

)/2} =
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cη
∑

j1,j2
|ηj2ηj2| ≤ c2

η, where cη is a constant. Similar technique could be applied to

prove (A.39) by noting that (e>j |S−1|e|S>−1|eej)(W>
·jW·j) = O(N).

APPENDIX B

In this appendix we provide some numerical procedures and results of the proposed

screening and selection method.

Appendix B.1: Local Linear Approximation Algorithm

We first state the rough idea of the revised LLA algorithm. Generally, it breaks the

estimation procedure into two steps. First, an initial Lasso type estimator is firstly

obtained by imposing an L1 penalty. Next, a local linear approximation is applied

on the penalty as pλ(|dj|) ≈ |dj|p′λ(|d
(0)
j |), where d

(0)
j denotes the estimator from the

initial Lasso estimator. Consequently, the previous estimator is plugged in to continue

estimation, which essentially leads to a weighted L1 optimization problem. Here we

borrow the idea of the LLA algorithm and illustrate the algorithm for the network

data in the following.

Since the estimation of (3.3) does not take a closed form, the classical LARS

algorithm (Efron et al., 2004) cannot be directly applied. Alternatively, we take the

approach of the coordinate descent estimation (Breheny and Huang, 2011). That is,

we optimize the objective function with respect to each parameter (i.e., dj) at once

and repeat the procedure sequentially. In each step, the second order approximation is

applied to the quasi likelihood and then the objective function is analytically optimized.

For the jth parameter dj, we introduce the notation θ
(−j)
M as the remaining vector

after dj (j ∈M) is deleted in θM. Recall that `(j)(x) = `(x, θ
(−j)
M ) is a function of `(θ)

at dj = x given the other parameters θ
(−j)
M fixed, ˙̀(j)(·) and ῭(j)(·) are the first and
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second derivative function of `(j)(·). It can be derived

v1j
def
= ˙̀(j)(dj) = −Te>j S−1

MW·j +NTδ1j,

v2j
def
= ῭(j)(dj) = T (e>j S

−1
MW·j)

2 + σ̂−2
e (W>

·jW·j)
T∑
t=1

Y 2
jt − 2NT (δ1j)

2, (B.1)

where δ1j = (NT )−1σ̂−2
e

∑T
t=1(SMYt − Ztγ)>(W·jYjt) and σ̂2

e = (NT )−1
∑

t(SMYt −

Ztγ)>(SMYt − Ztγ). Given the mth estimator d̂
(m)
j for j ∈ M, we could approximate

the quasi log-likelihood function with respect to dj at d̂
(m)
j by omitting some constatns

as

`(θM|θ(−j)
M ) ≈ ˙̀(j)(d̂

(m)
j ) + v

(m)
1j

(
dj − d̂(m)

j

)
− 2−1v

(m)
2j

(
dj − d̂(m)

j

)2

,

≈ −2−1v
(m)
2j

(
dj − (v

(m)
2j )−1v

(m)
1j − d̂

(m)
j

)2

,

where v
(m)
1j = ˙̀(j)(d̂

(m)
j ), and v

(m)
2j = ῭(j)(d̂

(m)
j ). In addition, let z

(m)
j = (v

(m)
2j )−1v

(m)
1j +

d̂
(m)
j . The approximated objective function in the jth dimension takes the form

Qa(dj) = v
(m)
2j (dj − z(m)

j )2 + w
(m)
j λ|dj|, (B.2)

where w
(m)
j = p′λ(|d̂

(m)
j |) is the weighted parameter. As a result, (B.2) takes an L1

penalty form, which can be optimized and the closed form solution can be obtained.

However, note in the approximated objective function the quadratic form (d− z(m)
j )2

is weighted by the scaling value v
(m)
2j , which varies across different nodes. This could

result in a unstable and discontinuous solution of the penalty function (Breheny and

Huang, 2011). Moreover, it loses the consistent interpretation of penalty parameters.

To solve this issue, we follow Breheny and Huang (2011) to adopt an adaptive rescaling

technique by using a scaling parameter, which transforms the objective function in
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(B.2) to the following one,

Q∗a(dj) = (dj − z(m)
j )2 + w

(m)
j |dj|. (B.3)

This is equivalent to solve a univariate Lasso problem and the closed form solution

can be obtained as d̂
(m+1)
j = sgn(z

(m)
j )(|z(m)

j | − w
(m)
j )+, where sgn(·) denotes the sign

function and (|z(m)
j | − w

(m)
j )+ = max(|z(m)

j | − w
(m)
j , 0). The estimation procedure is

summarized in Algorithm 1.

Remark. It should be noted that in the first step, solving (B.3) essentially yields the

Lasso estimator. To avoid eliminating portal nodes at the beginning, it is recommended

that the tuning parameter λ(0) should be sufficiently small. We follow the advice of

Wang et al. (2013) to set λ(0) = λη with a small η = 1/ log(NT ).

Appendix B.2: Simulation of the QMLE Estimation and Inference

In this section, we conduct the simulation experiment to verify the model inference

result. We set the first ns = 10 nodes to be the portal nodes. Next, we use the three

examples in Section 4.1 to construct the network structure among the non-portal

nodes. The other settings are the same with the simulation study in Section 4.1. The

experiment is replicated for 100 times. In each replication, M is constructed by the

all the portal nodes, and other 5 non-portal nodes with highest nodal in-degrees.

To evaluate the estimation performance, we calculate the average RMSE for the es-

timated parameters, i.e., RMSEd =
∑100

r=1{|M|−1
∑

j∈M(d̂
(r)
j −dj)2/100}1/2, RMSEγ =∑100

r=1{p−1‖γ̂(r) − γ‖2/100}1/2, where d̂
(r)
j and γ̂(r) is the QMLE estimation obtained

at the rth replication. In addition, the 95% confidence interval is constructed for

both dj and γj as CI
(r)
dj

= (d̂j − z0.975ŜE
(r)

dj
, d̂j + z0.975ŜE

(r)

dj
), and CI(r)

γj
= (γ̂j −

z0.975ŜE
(r)

γj
, γ̂j + z0.975ŜE

(r)

γj
), where ŜEdj and ŜEγj are the root square of the diago-

nal elements of asymptotic covariance given in Theorem 2, and zα is the αth quantile
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of the standard normal distribution. Then we report the average coverage probabil-

ity (CP) for dM and γ respectively as CPd = 1
100|M|

∑
j∈M

∑100
r=1 I(dj ∈ CI

(r)
dj

) and

CPγ = 1
100p

∑p
j=1

∑100
r=1 I(γj ∈ CI(r)

γj
).

The results are summarized in Table 1. First, the RMSE values are decreased as N

and T increase, which implies the consistency of the resulting QMLE estimator. Next,

the coverage probabilities of both estimators are stable at 95% level. This corroborates

with the asymptotic normality result given in Theorem 2.
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