Supplementary Materials to “Portal Nodes

Screening for Large Scale Social Networks”

APPENDIX A

Appendiz A.1: Useful Lemmas

In this section we present and prove five useful lemmas, which could be employed

as tools in later proofs.

Lemma 1. Assume X follows sub-Gaussian distribution with mean 0 and moment
generating function satisfying E{exp(sX)} < exp(0?s%/2). Then the random variable
Z = X* — E(X?) follows sub-exponential distribution with mean 0, and the moment
generating function satisfies E{exp(sZ)} < exp(c?s?) for all |s| < 1/c, where c, is a

positive constant.

Proof: The proof can be found in Proposition 2.7.1 of Vershynin (2017).

Lemma 2. Let X = (X;,---, X)) € R* and Y = (Y,---,Y,)" € R"™ be sub-
Gaussian random vectors, with each element X; and Y; following sub-Gaussian distri-
butions. Specifically, let E(X) = 0 € R", E(Y) =0 € R, cov(X) = X, € R™",
cou(Y) =%, € R, and cov(X,Y) = X,, € R"™". Then, for any matrizc M € R**",

there exists positive constants v, ¢y, ca, c3, and cy4 that

P{‘m’l(YTMY) — aggm)‘ > 6} < exp{ - c205y1m252}, (A.1)

zy

P{ ‘mfl(XTMY) _ tm

> (5} <c3 exp{ — 64027011!7712(52}, (A.2)

for any 0 < 6 < v, where Uém) =m tr(MY%,), O';S;ZI) =m tr(MX,,), ooy = tr(M3,M
) + tr(ME,M"S,), 0oy = tr(E.ME,MT) + tr(S,,M 3,,M"), and m is a nor-

malizing constant.



Proof of (A.1): Note that YT MY =2-'Y T (M+M")Y. Let Y = £,/?Y". It can be
concluded Y follows sub-Gaussian distribution. Let M = M + M. It can be derived
YTMY = YT (2)/)TM(Zy/?)Y. In addition, let M = (3/?)TM(S,/%), which takes
a symmetric form. Let A\ > Ay > --- > )\, be the eigenvalues of M. Since M is a
symmetric matrix, we could have the eigenvalue decomposition as M=UTAU , where
U= Uy, ,U,)" € R™" is an orthogonal matrix and A = diag{)\;, -+, \,}. As a
consequence, we have YTMY = > \;(?, where (; = UZ-T? and (;s are i.i.d. from the
standard sub-Gaussian distribution. It can be verified (? — 1 satisfies sub-exponential
distribution by Lemma 1. Next, one could easily verify that the sub-exponential
distribution satisfies condition (P) on page 45 of Saulis and Statuleviveccius (2012),

thus we have

P{m ' (YTMY) — o™| > 6} = P{3, Ni(¢? — 1)| > 2md}

< ¢ exp{—c(3; A\}) " 'm?6%} = ¢y exp{—cotr 1 (MX, MY, )m?§?}.

By noticing that tr(MX,MY,) = 2{tr(MX,M%,) + tr(MX,M"%,)} = 204,, (A.1)

can be obtained.

Proof of (A.2): Let Z = (XT,Y")T € R? and M* = (0, M; MT,0) € REM*xEn),
Then we have X TMY = 271(ZTM*Z). Therefore, (A.1) can be readily applied. Let

Y, = cov(Z) = (B, ay; X)) € REWXC Tt can be verified tr(X,M*S,M*) =

Ty xy?

2{tr(X;y M TS, M ") + tr(X, M, M")}. Consequently, the desired result (A.2) can

be obtained.

Lemma 3. Assume conditions (C1)-(C3) hold for the model (2.4). Let Y and Z
follow the model (2.4) with ¥., = (Z'Z — ¢;'ZL"YY'Z)/(NT) and EN]Zy = Yz —
TN~ 'e, ' tr? (S )85y 8z, where ¢, = Y'Y and ¢, = Ttr(Sy). Then it can be

concluded izy is a positive definite matriz and

P(||Z]Z_y1 — EZ_;H >€) <67, exp (— 5;‘yN1_QTTe2) + ¢y exp (— cZyZNTEQ) (A.3)
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*
where 07, 05,

. . , :
Ty Cryz» and c;, . are finite constants, and || - || denotes the Frobenius norm

of a matriz, i.e., ||[M| = tr*/2(MTM).

Proof: We separate the proof into three steps. In the first step, we prove that i‘zy is

positive definite. Second, we show that
P2,y — izyH >€) < iyexp (= 0y N'7Te) + cry exp (— 2. NT€?),  (A4)

where 61, 02y, €142, and ¢y, are finite constants. Lastly, we prove the results of (A.3).

STEP 1. (X, IS POSITIVE DEFINITE) It suffices to prove for any n € R?,
n'Szn— TN e, (S ) (n"S27)* > 0. (A.5)

To this end, we derive the upper bound for TN~'¢, tr*(S~')(n ¥ z7)?. First by Von
Neumann’s trace inequality, we have tr(S™') < SV 0;(S71), where o;(M) denotes
the singular value of arbitrary matrix M. It can be further derived {>,0:(S™1)}? <
N{>,02(S™ )} = N NS HS™) T} = Ntr(Xy)/cye by Cauchy inequality, where
Cre =73z + o2 In addition, by Cauchy inequality, we have (n"¥z7)? < (n"Xzn)
(7"227). As a result, we have TN "¢, "tr*(S™")(n"Sz7)* < (n7220) (v 227)/Cre-
Consequently, we have ' Xzn—TN "¢, 'tr?(S71)(n"X27)* > (1=7"E27/cye) (0 Xzn) =

02/c\e(n"ESzn) > 0. The desired result (A.5) can be obtained.

STEP 2. (PROOF (A.4)) It can be shown that P(||Zzy—izy|| >¢) < P(|Z"Z/(NT)
— 3| > €/2) + P(||e, ' (NT) ' Z"YYTZ — ¢; ' N 'Ttr*(S~)Ez7y " Sz|| > €/2). Since
we have cov(Zy,, Zy,) = Oz kInT, then we have P(||Z'Z/(NT) — $z|| > €/2) <
c1. exp(—co, NTe?), where c;, and ¢y, are finite constants. Next, note that cov(Y, Z;) =
S~y zex) and we have P(|¢,/(NT) — ¢,/ (NT)| > €) < 61, exp(—02y N?T/co,€?) by
Lemma 2, where ¢y, = tr(X%), 61, and dy, are finite constants. Therefore, it can be de-

rived P(||¢, " (NT)'Z"YYZ — ¢, " N7'"Ttr*(S™") S 2y " 2z]| > €/2) < b1y exp(—0ayc)
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[(Tcay)€?) + 2¢1y, exp{—c2,.Nc,/0,.€*}, where ¢y, = tr(X}) and o, = tr(Zy) +
tr(S72). It can be derived ¢z, < NX2, (Zy), ¢y > NAuin(Zy), and o, < tr(Sy) +
tr{S7H(S™) "} = c3,tr(Xy), where ¢z, = 1+ (7' Sz7 + 02)7L. Note Apax(Zy) = N7
and Apin(Xy) > Tmin by condition (C3). Then (A.4) can be obtained by adjusting the

constants.

Step 3. (PROOF OF (A.3)) Note ' — i;yl = SN2, — ¥.y)%s, . Let

2

Ay =0y —Soys Ay = Amax(Z2y)s and Aoy = Aax(S-,) Then we have |25} S22 =

2y
tr(S5 AL E2AL, S0 > A2A 2| AL |2, Therefore we have P(|[S;) — X2} > 6) <
P{||A.,]| > 6A.,\.,}. Suppose & is small that & < X,,. Consequently we have
P{|AL | > 0xyhay} < P{IAL ] > 6(Xey — Ay} + P(Asy < Ay — 8). According to
the Wielandt-Hoffman Theorem (Izenman, 2008), one could obtain that |\, — Xzy| <
|12,y — izy||2. Therefore it can be implied that P(),, < Xzy —0) < P(|Azy — Xzy| >

J) < P(||X., — iZyH > 0). Together by (A.4), (A.3) can be obtained.

Lemma 4. Let Y € R, X, € RM= and Xy, € R are sub-Gaussian random
vectors with cov(Y) = 3, cou(X;) = Y1, and cov(Xy) = Xo,. In addition, let
My € RNNy and My € RNvNo. Define &,y = (YT MY ) /Nim, &y = (Y TMyY)/Nap,
Elz = (X' X1)/Ny., and §2m = (X, X3)/No,, where Ni,, and Ny, are normalizing
constants. Accordingly, let py, = E(ay), Loy = E(é\éy); Hiz = E(Elx) > 0, floy =

E(&,) > 0.

(a) Then for a sufficiently small §, we then have

P(’gl_xlgly _ Hl_zlluly‘ > 5) é Alm + A1;13 (A6)

P(‘glyéy/(g\lxéx) - /Llylqu/(,ulx,uZx)l > 5) S A1'm + AQm + Alz + AQJ} + Z1771 + £2m7
(A7)

where Ay, = ¢y exp(—cooy,t N2 12.6%), Aoy = 5 exp(—cog N2 112,6%), A1p = c3exp(

—C107, NToi3,), Doy = crexp(—csoy, N3, pi3,), A =01 XD (201, Ni i o5, 252)

ZQm = c5exp(— cﬁanN2mM2$M1$M1y5 ), Otm = tr(MiZ,M%,) + tT(MIEyMlTZy);
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Oom = tr(MaX, MyX,) + tr(MgEyMQTEy), o1z = tr(X1,), 09 = tr(33,), and ¢; (1 <

Jj < 8) are finite positive constants.

(b) Let Z = (Z,) € RNv*P where Z,, following sub-Gaussian distribution with E(Zy) =
0 and cou(Zy,, Zr,) = Ozpkodn,. In addition, let ¥, = (0, k) € RP*P and assume
coo(Y, Zy) = (e} 2.7)X.,, where ex, € RP is a p-dimensional zero vector except the
kth element being 1, v € RP is a p-dimensional constant vector, and %,, € RNv>*Ny,
Define ayz =Z"M,Y/N,, Egyz = 7" MyY/N,, and accordingly ji1,. = E(Elyz), Hoys =
E(Egyz) In addition, assume Q € RP*? be q random matriz and for a sufficiently small
€ >0, it holds

P(|Q= Q| > €) < Aule), (A.8)

where Ay (€) is a positive constant related to €. It is assumed wypin < Amin(Q) <
Amax () < Wmax, Where wimin and wmax are finite positive constants. Then for a suffi-

ciently small &, we then have

~ Oft1y
P([|&5 QE-8,.) — it Qpnyaid, )| > 8) Au(6) + Ao )

12| 2= ]
+ Ay + Ay + Aygys, (A.9)
where Ny = 1y exp(—c01, NEid,), Are = oy, exp(—c N2oy ) p1120%), DNgy. =

a b2l 2 _ T T T _

5, exp(—chZNy Ooyzt1c0 ), 01y = tr(MaX, My ) +tr(X,, M, X, M), 0gy, = tr(Ms3,
T T T b b »

My ) + tr(X.y My 3.y My ), and ci,, Cows Cizy Coz, 1. Clyzs Coyny Coy, aTe findte con-

stants.

Proof of (a): For simplicity, we only prove the first inequality of (A.6). The second

one can be obtained by iteratively applying the same technique.

PROOF OF (A.6). First we have |§1y/§1m—u1y/ulz| < |§1y/az—u1y/am|+]u1y/ax—
fi1y/p1a]. It can be concluded P(|€y, /1o — pay/tirs] > 6) < P(|€1y/E10 — p1y/Era] >

§/2) + P(|,u1y/§h, — p1y/p1z| > 6/2). We then derive the upper bound for the two
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parts respectively in the following.

PART I. It can be derived

N1y| /vblx 5/2>

T 1z

P(‘é\ly/glx - Mly/gla:’ > 5/2) (|£1ylu1
(‘gly
H1

By Lemma 2, it can be derived P(|€y, — iy > 0p10/4) < ay exp(—asop, s N2, 1i2,62),

[y > 5/4) +p<& > 2) (A.10)

z 1z

where a; and ay are finite constants. Next, we have P(puy, > QEM) = P{Q(glm —fhz) <
—pzt < P{|€12 — 1] > 1/2p1,}. By Lemma 2, we have P{|{1, — p1z] > 1/2p1, ) <
cgexp(—cyo ) N2 p?,). By summarizing the results in PART I and PART II and re-

arranging the constants, the desired results in (A.6) can be obtained.

PART II. Without loss of generality, we assume p1, > 0. Let 6" = (241, /p112) /(1 +
2p1y/1z)6. Therefore, we have §* < ¢ and hence P(|u1y/az — fay/ ] > 6/2) <
Py /610 — piay/ira] > 6°/2) < Py /€10 > 0% /2 + piry /1) + Py /10 < =072+
pay/tiz). Then we have Py, /o > 0°/2 + py/ps) = Plpny/€ > {1+ 6/(1+
2try/ p1z) Wiy 1a) = P(€1e — p1a < —0/(1+ 21,/ pas + 0)pt1z). Similarly we can
obtain Pljury/Ee < —6%/2 + pyfine) = P(ee — e > Spura/ (1 + 21y /110—0)).
Consequently we obtain P(|uly/§¢1373 — py /e > 6/2) < asexp(—agor, N2 p2,6%),

where a5 and «g are finite constants.

PROOF OF (A.7). It can be noted that

€1y§2y _ ,U/Iy/~b2y _ <@ _ ﬂ) (gﬁ _ @) + ﬂ(&ﬁ _ @) + @(gﬂ _ ﬂ)
§1z Mz’ Ny Moz Hiz NEop  M2a Moz Ny Hia

glccé;x iz 2

Consequently, (A.7) can be obtained by applying the same proof technique of (A.6) to

each part separately.

Proof of (b): Let §1yz = 51 1/2§1yz and §2yz = 51 1/2§2yz Accordingly, let uj,, =

ufxl/ Py and ps, . = /le/ [2y-- In this part, we derive upper bound for P(HQ flyZ£2yz)

6



Q(lezﬂzyz || > §). Then the results can be obtained by using (A 6). It can be noted

~

Q)p5,. 113, Therefore we have

P(||Q(&,.6,.) — Qlyetis)|| > 0) < PO — Qpii iy |l > 6/3)

+ P(||Q(§1yz€2yz Mlyz:u2yz)|| > 5/3) + P(H(Q Q) (glyzééyz /”Llyz:u2yz)|| > 5/3)

We next look at the above three terms one by one. Without loss of generality, we
assume 11}, 15). # 0. Then we have [[(Q — Q)i il = (15).01202) 26 /2{(O)

Qi (O = )} = (3012 L (@ = Q0203 12 = 17 (@ — Q).
Therefore we have P(|(@-Q)ys,opis || > 6/3) < P(Muin( @] > 37 a3,
8)- By (A8), P([Amin(€Q = ) > 37|t |7 13,1 76) < Au(Gpine | poagel| sz 7)-
Next, let U,, = §1yZ§2yz ,u’{yzuzyl, where w3 is a positive constant. Then we have
1QU,.|| = tr'/2{U,Q%U,.} > Auin(Q)||U,: . Therefore we have P(||QU,.|| > §/3) <

P(||Uy:|| > 37'A,;,(22)0). Lastly, for the last term we have P(|(Q - MU, >0/3) <

mm(

P(|Q = Q| > /5/3) + P(||Uy:|| > +/6/3). Consequently, it suffices to derive the rate
of

(||£1yz§2yz :ulyz:u2yz|| > 51) (All)

where 6, = min{,/9/3,6/(3Amin(2))}. In other words, it suffices to derive P(\nTé’lyzﬁzyz
n— 0" Wi, 15, > 61) for any n € RP with [|p| = 1. By similar arguments, it
can be derived that P(|n"&;,.&50n — 0" wi,.psenl > 01) < P(n"&,. — 0" piy.l >

d2) + P(\nTgyz — ' p3,.| > 02), where 6 is a finite positive constant. Note nTﬁlyz =
(nTZTMY)/N,. Let Y = (Zn))T,Y )T € RCN). We then have n7&,. = YT M;Y/2,
where My = (0, My; M]",0) € RCNIXCNo) Tt can be derived ¥y = cov()) =

(ogln,, X7 Ezy,Ey), where 0, = n'%,n and ¥, = cov(Zn,Y) = (n"2z7)%.,

2y?

We then have tr(SyM;SyM;) = 20,tr(Mi Xy M) + 2(n"Sz7v)2tr(3,, M, 2., M.

Moreover, we have n'puy,, = cov(M,Y,Zn)/N, = (n"Xzy)tr(M;X,,)/N,. Then by



(A.2) of Lemma 2 and (A.6) of Lemma 4, we have P(|77Tgfyz —n'pi,.l > 6) <

e exp(—cgyzNyzafyzulx(S%) + A1,. Consequently, (A.9) can be obtained.

Lemma 5. Let X € R™"™  and S be its estimate. Assume for any e > 0, ¥ and 5

satisfy

Tmin S )\min(z> S )\max(z) S Tmax (A12)

and P{”f} — ZHOO > e} < crexp(—cT€ + czlogm) (A.13)

where 0 < Tmin < Tmax, C1,C2,C3 are positive constants. In addition, if m = O(T‘Sl)

with 0 < 6, < 1/2, then we have for a positive constant cy,

P( sup |r' (i - S)r| > e) < ¢y exp(—cyTm e + czlogm + c4m) (A.14)
lIrl=1

~ ~

and Tmin/2 < Anin(X) < Anax(X) < 27max with probability tending to 1,  (A.15)

where ¢y, co, 3 are positive constants.

Proof: Note that by (A.12) and (A.14), the conclusion (A.15) is implied by the

condition that m = O(T°') with 0 < §; < 1/2. Thus, let us prove (A.14).

For any ||7|| = 1, we have

(S =)l <D 1rarpllGig, — il

jl:jQ
m
<IE =Sl D Irirpl = 15 = Sl 1))
J1,J2 Jj=1

=2 = Sllllrlf < mlX - 2l

Therefore, we have P{‘TT{i—E}T‘ >e} < P{|E=2o > ¢/m} < c1 exp(—coTm2e2+

c3logm). Lastly, we apply the discretization argument (Lemma F.2 of Basu et al.
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(2015)) and then the result (A.14) could be obtained.

Appendix A.2: Proof of Proposition 1

It suffices to show for a sufficiently small &;, we have P{ max; |]§? —R?| > 6.} — 0.
We first derive the form of ﬁ? To this end, we first give (YTY)!. Let &, = YTY and

Q. = (Z"Z —¢;"L"YYTZ)~". We then have

L et + 6T I, ZTY  —6,' YT ZA,,
(Y'y)™ = : (A.16)

—é;lgzyZTY sz

It can be noted Xt(j) =W,Y; = (WjejT)Y;, where Xt(j) is the jth column of X;. Let
M; = Iy ® (Wje)), & = XX, and &; = Y'M;Y, where e; € R is a vector with
the jth element being 1 and others being 0. Define

ﬁlj = fl_jlé_lfgja §2j = 51_31 (YTIMIJ'ZQZ?JZTIMI;FY)7

Y

Raj = —261¢160,(Y MZQ,,Z7Y), Ry = €1¢,2(YZQ,,27Y).

Consequently, EJQ can be expressed as ]?if = Elj + éQj + Egj + Z§4j. Accordingly, define
Ryj = (kijovjc,)'w3;, Raj = (Nkyjoyys) 'w3c., Ry = (Nryjoyicy)~ (k3;c5¢.),

and R4j = —2(Nl'ile'yJ‘jCy)71%23‘/{3]'0802. Hence we have R]2 = le + jo + jo + R4j.

Therefore we have

4
P{|R? — R?| > 61} <Y P{|Rij — Ri;| > 61/4}. (A.17)
k=1

It suffices to show Zjvzl P{‘Ekj — Rkj} > 51/4} — 0 for 1 < k < 4. For the sake of

similarity, we prove the case for £ = 1,2 in the following two parts.

PART 1. (PROOF OF Y1 | P{|Rij—Ryj| > 01/4} — 0). Let R}; = (NT?) " (WIW,)~!

(YTMLY)?, Gy, = T7'>0, Y, and v = Y'Y/(NT). Accordingly, set R}, =
9



(NT?)" 'k /{%J, 02 = N~ 'tr(2y). Consequently we have |§1j —Ryj| = |3{,;]3{,2R>{j -
oy 507 Ry, where Ry, = {(T7'N~Y2x*)(YTM;Y)}?. Note that we have Ry; =

(R *I/Q/AYJJ)( *1/2/A2) Therefore by Lemma 4,

(|E§}]E;2R* O‘Y”UYQR* | > 01/4) < o exp(— czTNm]almUYN(SQ)

-~

=A1

+ c3exp(— C4TNI<0130'1771L0'}/5 )+205exp( 6T Nk1jo1,,0y0y Ry 152)

-~

::AQ :=A3

+ o exp{—cgTtr* (Z%)trQ(Ey)}: + cg exp(—c1oT)

=Ay =Aj

where o1, = (W) Xye;)? + (W Sy W, )ov,j, ¢;s (1 < j < 6) are finite constants.
Further it can be calculated that oy, < 2(W;~rzij)O'y’jj < Q(W]T-Wj)ay,jj)\max(ily).
Moreover, we have and oy j; > Amin(Zy) and 0% > Apin(Xy). Therefore, it can
be shown that A; < ¢ exp(—cT' N1,

max

2. 6%), Az < csexp(—cgTNT,2

max mln

! 7mind%) (by (C3)). Similarly, we have Ay <

czexp(—c,TNT2 2. 62), and Ay < crexp(—csTNT 2,

max m1n

72..0%). Consequently, it can be derived P(’O‘Y”O'Y2R* 0y ;;0v Ryl > 61/4) <
a1 exp(—aTN'2763) + azexp(—ayTé7), where a; for 1 < j < 4 are finite con-
stants. Note that 7 < 1/2 and T = O((N?1=%log N)¢) for ¢ > 1, we then have

SN P(|Ryj — Ryl > 61/4) — 0.

PART 2. (PROOF OF Zj\[:l P{|§2j — sz‘ > 51/4} — 0) We re-write §2j as
Y TMZ,, ZTM] Y = M0 { 0, (ZTM] YY M, Z)} = (3;,;32 132]) (A.18)

where X, = Q_ 1 /(NT), .f{’z‘j = Ky, (NT?)"Y(Z"M] YYM|Z). Note we have E(Z M
Y) = tr(M] S™")Xzy = T(W,S 'e;)8zy = Tks%zy. Consequently, one could
verify that Ry; = tr (ayjji JR3;), where R5; = ki N7'k3 577y Sz Next, we
apply (A.9) to obtain the results that P{HO'YM o R;‘j ayij Yo, Rsll > 01/4) <

Ay(dy) + Aw(ay7jj/i1j/igj2]\f||ZZV||*251) + A, + Ay, + Ay, where in this case we have

10



Ay, = Agy.. Note here we have P(||[NTQ,, — X,,]| > €) < A,(61) by Lemma 3,
where A, (61) = &5, exp ( — 65, N'"2"T6%) + i, exp ( — ¢3,,NT67) — 0. It can be
derived x3; < ejTS_lS_lTej(W]T-Wj) = 0y j;jk1;/Cye. Therefore we have O'y’jjliljligjz >
Cre. As a result, we have Ay (oy k165 N[|E27)72601) < Au(crel|Szv||2N6y) —
0. Next, we have A, = ¢, exp(—co,0or, T2, 6%), where oy, = oy and p, =
oy;;. Consequently, we have A, = ci,exp(—cy,T6}). Next, cov(Z,Y) = (Ir ®
S (el X77), where e, € RP is a vector with the kth element being 1 and other-
s being 0. Let Xy = Iy ® Xy. Consequently, we have X., = Ir ® S~! and Ay, =
Agy. = ¢, exp(—ch NT?k1j0,; 111,6%), where 0y, = tr(M] SyMj) +tr(3,,M; ¥, M;) =
T(WISye;)*+T(e] STW,)? < T(WIW,)(e] S2e;)+T(WIW ) {el S71(S™) Te;}. Tt
can be further derived T(W.JW.;)(e] X¥e;) < kTN, (Xy) and e] STH(S™)Te; =

clel Yye; < ¢ Amax(By ). Therefore, 0, < ki TN{AZ . (By) + ¢} Amax(By) } In ad-

ye “j max

bx

dition, we have oy j; > Amin(2y). Consequently, it can be derived Ay, < Cox eXp(—cyz

N'727T67) by condition (C3), where ¢% and % are finite constants. Lastly, note by
condition (C3) we have 7 < 1/2 and T = O((N?1=%91og N)¢) with ¢ > 1, we have

Z;il P(|}A22j — Rs;| > 01/4) — 0. This completes the proof.
Appendiz A.3: Proof of Theorem 1

In this proof, we separate the proof into three steps. In the first step, we show that
the total amount of signal Zj\;l RJQ- is of O(NT7). Second, we prove the set M can be
covered by M = {1<j<N: E? > Cmin/2}. Lastly, we show that the size of M can

be bounded by 1.y, which takes order of O(N*7=¢).

STEP 1. We first prove that Zjvzl R? < C, = O(NT). It suffices to show the upper
bound of each term in (2.7). Specifically, we reconsider that Ry; = (k1;0y,55¢,)” " K3;,
Ryj = (Nk1joy,jj) " K3c., Ry = (Nryjoy i)~ (k3;c5c.), and Ry; = —2(Nkyjoy jic,) !

Kojk3;CsCs, and we have RJZ = Ryj + Ryj + R3; + R4;. We next investigate each of them
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separately. By Cauchy inequality we have

¢y = Amin(Zy ) 0y = Amin(Ey) (A.19)
[5aj] < (€] Sye)) WISy W) 2 < o2 s A2 (Sy), (A.20)
co S NN {STHSTH T} = N (Sy) /e (A.21)
5] < [e] {STHST) e AW W )Y = 03/ 2y 2 el (A.22)

It can be shown that max{|Ry,|, |Ra;|, |Rs;|, | R4} < ¢:Amax(Xy)/N, where ¢, is a
finite positive constant. For simplicity, we only verify R;; for illustration propose. It
can be derived |Ry;| < (e] Bye;) (W] Sy W)/ (k10v,55¢y) < Amax(By)/{N Amin(Zy)}
by (A.19) and (A.20). Consequently, by condition (C2), we have > _; R? < C,, where

C, = O(N7).

STEP 2. Recall cypin = minjep R7 and M C {j : R} > cuw}. Define M =
{j : }A%? > Cmin/2}. In this step, we show that M should uniformly cover M with
probability tending to 1. Otherwise, there must exist at least one j* € M not included
in M. By the definition, we know ]/%3 < 27'cpin. In the meanwhile, if j* € M,
we should have Rjz* > Cmin- This implies that |}§§ — R32| > 27 cin. As a result,
if M ¢ M, it then could be concluded max; |]/%\§ — R3| > 27 ¢pin. We then have
PM ¢ M\) < P(max; |§§ — Rj2| > Cmin/2). By condition (C2), we have ¢y, > ¢
asymptotically, where ¢ = N¢~!'. Then the desired results can be obtained by the

conclusion of Proposition 1.

STEP 3. Lastly, we verify that the size of M can be uniformly bounded. By the
first step, we have Zjvzl R? < C. = O(N7). Define M, = {j : R} > cmin/4}. It can be

def
= Mmax- BY

obtained C, > ZjeMS RJQ- > | Mg|cmin/4. Then we have |[M,| < 4C, /cpin
condition (C3) and the result in STEP 1, it can be concluded that M., = O(NT77¢).
If |ﬂ | > |M,], we must have M ¢ M,. This implies there exists at least one

j € M with }’%]2 > Cmin/2 but j & M, with R} < ¢pin/4. Consequently we have

12



max; |R§ — R?| > 4 cyin. It can be concluded P(JM| > Mumax) < P(max; |§j2 -RZ >
47 epin). By Proposition 1, we have P(max; |§3 — R?| > 47 '¢min) — 0. Immediately

we know P(IM| < mumax) — 1 as N — oo.
Appendix A.4: Proof of Proposition 2

Note the form of R? is given in (2.7) and recall R} = Ryj+ Ry;+ Rs;+ Ry;. It can be
derived Ryj+Rsj+ Ryj = ¢.N " (cskoj/cy—ks;)?. Therefore, we have R? > Ry;. It then
suffices to derive the order of R;;. Before we go into details, we define some notations.
For two arbitrary matrices M; = (my ;) € RV and My = (mag,;) € RM*N2 | define
My = My if myi; > mgy; for 1 <4 < Ny and 1 < j < N,. Similarly, we could define
the notation “<”. In what follows, we first derive the lower bound of R;; for j € M

as Ry; > (kyjoy,ic,)” ' K2;, where
ksj=e, WD(I — WD) (I - DWT)"'DWTW,. (A.23)

Then we discuss the order of the lower bound.

STEP 1. (Ry; > (k10v,5¢,) 'kE;) First, we investigate the order of ry;. By
performing a Taylor’s expansion on Yy, we have ¥y = I + (I — WD)'WD + (I —
DWT'DWT4+WD({I—-WD) " (I-DWT)"'DWT. One can easily verify that rq; =
e, SyW,; =e/WDI-WD)'W,;+e/ DWT(I-DW ) 'W;4e WD(I-WD) *(I—-
DWT)T'DWTW,; = ksj + kyj + ks; due to ef W; = 0, where ky; = e DWT(I —
DWT)™'W, and ks; defined in (A.23). Due to that dyy, > 0, we have r3z; > 0,
kig; > 0, and kz; > 0. Therefore, we have Ry; = (kijoy,j;¢y) K3, > (K1j0v,j5¢,) K3

It then suffices to derive the order of xs;.

STEP 2. (THE ORDER OF (k1,0y,;¢,)”'k2;) Without loss of generality, we assume
the first s elements of d are nonzero. Assume c,. = 1 for simplification in the following.
Note r5; can be written as xs; = (W1 D)(Zy)(DW TW,;), where W;. denotes the jth
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row vector of W. It can be easily verified that WTD 0 and DWW, We
next prove that Xy = 0. By applying Taylor’s expansion on Xy, we have Yy =
{5 (WD) S22 o (DW T} Tt can be noted under the assumption of Proposition
2 that dpy, > 0, we will have all the elements in Xy to satisfy (WD)* (DW T)*2 = 0.
Then it can be shown the elementwise lower bound of WTD and DWTW]- are VV]TD =
dmmW Is, and DWW, = ¢;,D1 3= ¢ dmml 1y, where ¢, = IIllIljeM(W W), dmin =
min e d;, and I, = diag(1,,0y_,) € RV*N_ Consequently, we have

;> chdin (W LSy I y) > cd?, (W LSy ILW;)

w'min w“’'min

w'min w~w “min

> ¢ d2, (W@Tidiag(Ey)fsW/j ) > A d2 m}\rj Ty.j,
je

where the second inequality is due to 15 »= W;. and the last one is because WJT.TSVVJ

A%

2 by condition (2.12). For j € M, we have ¢; N¢ < min{c}, k1,;} < max{c}, r1;}

IN

IN

caN¢ by (2.10). Moreover, we have csN~'tr(3y) < minjep oy;; < maxjem 0y

caN~'tr(Sy) by (2.11). Consequently, we have (k1j0y,j;¢,) K2, > ciey  cacs el dn N

’ll) min

Consequently, the desired results can be obtained.

Appendiz A.5: Matriz Forms and Notations

Denote M.; to be the jth column vector of an arbitrary matrix M. The form of 3

is given by
Yod  2ady
22 - 5 (A24)
ng’y 227
Yod = (Badjjy) € R Bogy = (Bag;y 1 1 < j <m) € R™P with
ZQd,jle = ]&EHOO{N_I(;jl 53'2 + Ue_2N_1W;|'—1 sz (e;'rlzyejz)} (A25)
ngj,y = 0, ZQ’Y = O'e_QZz. (AQG)
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where 0; = eJTSX,lle. The form of X; is given as

Ad Om,p
¥ =35+ AY, where AY = , (A.27)
Opm Opp
where 0,,,, denotes a ny x ny zero matrix. Here Ay = (Adjrjp) and Agjy, =

limpy oo { Nt tr{diag(W,e] Sy )diag(W el Sif) Hka — 302) o}, where ky = Fe}.

J1%51 J2

Appendiz A.6: Proof of Theorem 2

The proof is separated into the following two steps. In the first step, we prove that

O, is consistent with the rate ay = V(NT)=1/2m1/2. In the second step, for each

parameter g] (j € M) and 7, we show that they are asymptotic normal.

STEP 1. To establish the consistency result, we follow Fan and Li (2001) to prove
that for e > 0, there exists a constant C' > 0 such that

lim P osup V(0 + anru) < £(0 >1—e. A28
i P{ b €00+ avr) < €0s0} > (A.28)

It is implied by (A.28) with probability at least 1—e, there exists a local optimizer @\M in
the ball {0+ Canru : ||ul| < 1}. Consequently, we will have ||§M — 0| = Op(anT).
Let ((0a) = 00(Op)/00pm € R™ and (Opg) = 0*(Op) /000005, € R™™ be the
first and second order derivatives of £(6,) with respect to . We apply the Taylor’s

expansion to obtain that,

. 1
sup {K(GM + Cayru) — E(QM)} = sup {CaNTﬁT(HM)u + =C*3pu L(Op)u + op(m)},
Jull=c Jull=c 2

< Cllantl(Ou)]l = 27 C*mAmin{ —(NT) 1 i(6r4)} + 0,(m). (A.29)

We then prove that (A.29) is asymptotically negative with probability 1.
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Denote £4(00) = 00(0p1)/dpq € R™ and £,(00) = 00(0p1)/Dy € RP. In addition,
denote Ca(0p) = (0o a;,(001)) = 0*(0m)/0dp0d)y € R™ ™, Lgn(Op1) = (Lyyy)T =
20(00)/0d gDy T € R™P and £, (Op) = 0*0(0pq)/0v0~T € RP*P. We then give the

expressions of £(A,;) and #(A,) in the following as

g, (Opn) = =T, + 0,2, (A.30)

T
0(Opn) = 0.2 21 (SYy = Zi), (A.31)

t=1
where §; = e] STUW,;, A; = 3 (SY; — Zyy)T(W,;Y}), and

T
gdjldjz (Oa) = —T35,05, — 0.2 Z WT Wi YiiYie), (A.32)

T T
Edﬂ<0/\4) = _043_2 Z ZtTWjY}t? EW(GM) = —0';2 Z ZtTZt'

t=1

Next, we prove two important results: (1) aNdej(é’M) = 0,(y/m) and aypl.(0p) =
O,(v/m); (2) P{|| = (NT)"Y(Op1) — Zalloc > €0} — 0 for arbitrary ey > 0, where
Yo is given by (A.24). Next, we separate the proof of STEP 1 into 3 parts in the
following. In STEP 1.1, we prove (1), in STEP 1.2, we prove (2), and STEP 1.3, we
prove (3) Amin(22) > 79, where 79 > 0 is a constant. Then by applying Lemma 5
we have Apin(—(NT) " (00,)) > 70/2. Consequently, by choosing C' large enough, we
could have (A.29) is negative with probability tending to 1. This completes the proof

of STEP 1.

STEP 1.1. We firstly look at (A.30). Note that E(A;) = Ttr(Weje] S™') =
T6;. Therefore we have E{édj(OM)} = 0. In addition, note that Z; and & fol-
low sub-Gaussian distribution and are independent over 1 < ¢t < T. Then we have
var{aNdej(HM)} < caypTottr{Weje] ST'STe;jef W < eymN ™' (e Sye;) (W W)
< 1MAmax(Sy ) (N "W W) = O(m), which is due to max{N "W W.;, Anax(Ey)} =

O(1) by (C5). Consequently we have « NTédj (Or) = Op(y/m). One could similarly ver-
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ify that anply(0a) = Op(y/m), which is omitted here to save space.

STEP 1.2. It suffices to show for any ¢y > 0

P{|| = (NT) " 0a(Opm) — S2al| _ > €0} — 0 (A.33)

P{H aNTEdv QM)Hoo > EQ} —0 (A34)

and —(NT)~',(0,) —, 0,25 7. Due to the similarity, we only prove (A.33) in the

following. It suffices to show that

{ max ‘Zt ]2}/;1tY2t . W;szxyy]’ljz
NTU2 No?

> 61} 0, (A.35)

J1,j2€M

where €; = €y/3. Denote kj,j, = limy_,oc N™'W.J W.;,. By (C5), we have

Fjis < hrn NTY W W) P(W I W) < A (W) < 00

— 00

By Lemma 2, we have that

def —2|—1 2 :
Pd,j152 —P{ﬁjljzo-e |T }/}lt}/}ét - EY,j1j2| > 61}
t

< crexp{—c0o, JmTel} < crexp{—coA 2 Sy ) Ter}

for arbitrary positive €1, where o, 5, = Xvj1j,Dvjaji T 2V,j1j1 2Y,jajes C1, C2 are finite
positive constants. By (C5), we have Apax(Xym) < 72 < oo. Therefore we have
P{H — (NT)_lﬁd(HM) — EQdHoo > 61} S Zj1,j2 DPd.j1j2 S m201 exp( CQ/\mix(zy)TE%)

— 0 due to log(m) = o(T).

STEP 1.3. Note that we have A\yin(Xz) > 0, then we only need to prove that

Amin(Z24) > 70 > 0. It suffices to show that for any n = (;)" € R™, we have

N 035m0y, + 02N iy, W W, Sy > 7o > 0, (A.36)
J1,Jj2 J1,J2
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where 7y is a positive constant. One should note that for the first part of (A.36)
we have Y7 o 1;,0515,0;, = (32;1;0;)% > 0. Let W = WTW/N and Wy € R™™
denote the submatrix of W with row and column indexes in M. By Hiai and Lin
(2017), we have [[72; Aj(War 0 Sy a0) = [T A(WarZyvm) > Al (Wa) A (By,m)-
Since we have min{ Amin(Wa), Amin(Zym)} > 71 > 0 and Apax(Wag 0 By pq) <
male,jQ(W;sz)max||nH:1('r]T\Ey7M]6'r]) < Amax (W) Amax (| 2y mle) < oo by Condi-

tion (3.2), we could conclude that A, (Waq o Xy aq) > 79 This proves (A.36).

STEP 2. The asymptotic normality of 7 is trivial by noting that (NT)_1/2E2_71€7(9M)
—4 N(0,02%,") and then use the Slutsky’s Theorem. In the following we prove the
asymptotic normality for d;. Let n® = e?i;dl € R™, where Sy = —(NT) (6. Tt
suffices to show (NT)~2n0T¢4(A) —4 N(0,02). For convenience, we omit the index
i in 7@ and write 79 as n = (n;) in the following. Note that (NT)~2n®T(4(0,) =
(NT) 2] $514(00) + (NT) " 2e] (S50 —551)04(0,). We separate the goals into t-
wo steps: (1) we prove (NT)"Y2e] (851 =551 04(0p0) = 0,(1); and (2) (NT)Y/2¢] 25

Ed(GM) —d N(O, (T,?)

STEP 2.1. We could write (NT)*l/zeiT(i;dl—Zz_dl)éd(QM) = (NT)*l/QeiTi];dl(igd—

Yoq) s, dléd(e m). By the Cauchy’s inequality, one could derive that

(NT)™2|e] 251 (Sad — Daa) Eala(On)| < VNT| M {E51 (Sad — Boa) o H|[€a(Or)]|

I

< (NT) 72|01 (B0 — Baa) [ A (B20) A (B20) || £(0.10)

min

where A\ (M) denotes the eigenvalue with largest absolute value. From the STEP 1 we

know that (NT)~'2||{(8)|| = O,(y/m). Next, by (A.14) we know that

P( sup ‘T’T(i - Z)r} > e/ﬁ) < crexp(—cyTm e + czlogm + cym).

lI7[I=1

Since we have m = o(T°') with 0 < §; < 1/4, it could be concluded ‘)\1 (im — sz)‘ =
0p(1/y/m). This leads to the result that (NT)~2e] (S5} — $51)0a(00) = 0,(1).
18



STEP 2.2. One could write édj(GM) as

T
la,(Or) = =T6; + 0.2 > & {Wese] ST (& + Ziy)}

t=1

T T
=-Té; +o.° Z E Weje] ST + 0. Z & Weje] ST Zyy,

t=1 t=1

E T8+ Y EME Y EU(Zy). (A.37)
t t

One could verify that limyinv,7)—eo var{(NT)_l/2éd(6M)} — X1, where X is given by
(A.27). Tt can be derived " (4(0p) = =T > M0 2o & My E 30, 3 EUmi(Zry).
Let M, = >, Myn;, Uy = >, Uy, and M, = [M,le, U, = [Uyle. Since {&} is in-
dependent over 1 <t < T, then by the central limit theorem for the linear-quadratic

forms (Zhu et al., 2018), it suffices to show

T~ N~ tr{M,M, M,M, } = 0 (A.38)

T'N " Anax(U,U,) = 0 (A.39)

First we prove (A.38). It could be derived M, < Y. |n;[|[Wejef S71. o > My,

It suffices to show T NT237. . |1y 70 75 M [t { MLy, ML ML M7 b — 0. Let
Nj1jojaja = N1 Mia"jsNja- It can be derived
TN > g, tr{ML;, M ML, M}
J1,92,J3:J4
1 _ _ _ _
< NeT > Mjugasnia (WL W)W W) {ef 1S el ST ees, He 1S el ST ees }
j17j27j3aj4
] 4
< VoT > Mjugagaial [TV W50 2 () 1571l ST ey, )2
J1,J2,33:J4 k=1
< oy T N (W) A (Bym) = 0 (A.40)

as min{T, N} — oo, where the second inequality is due to the Cauchy inequality, and

the last one is due to Zj17j2,j3,j4 M5 MMM | < Zjl,jg |77j277j2|{2j3,j4(77j2'3 + 7732'4)/2} -
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eyl i 17,75, ] < 0727, where ¢, is a constant. Similar technique could be applied to

prove (A.39) by noting that (e]|S™'[c|ST " ce;) (W] W,;) = O(N).
APPENDIX B

In this appendix we provide some numerical procedures and results of the proposed

screening and selection method.
Appendiz B.1: Local Linear Approximation Algorithm

We first state the rough idea of the revised LLA algorithm. Generally, it breaks the
estimation procedure into two steps. First, an initial Lasso type estimator is firstly
obtained by imposing an L; penalty. Next, a local linear approximation is applied

)

on the penalty as py(|d;]) ~ |dj|p/)\(|d§-0)|), where d§0 denotes the estimator from the
initial Lasso estimator. Consequently, the previous estimator is plugged in to continue
estimation, which essentially leads to a weighted L; optimization problem. Here we

borrow the idea of the LLA algorithm and illustrate the algorithm for the network

data in the following.

Since the estimation of (3.3) does not take a closed form, the classical LARS
algorithm (Efron et al., 2004) cannot be directly applied. Alternatively, we take the
approach of the coordinate descent estimation (Breheny and Huang, 2011). That is,
we optimize the objective function with respect to each parameter (i.e., d;) at once
and repeat the procedure sequentially. In each step, the second order approximation is

applied to the quasi likelihood and then the objective function is analytically optimized.

For the jth parameter d;, we introduce the notation 95\? ) as the remaining vector
after d; (j € M) is deleted in 0. Recall that (V) (z) = {(z, H;j)) is a function of £(0)

at d; = x given the other parameters 95\7) fixed, £9)(-) and fU)(.) are the first and
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second derivative function of £)(-). It can be derived

vy, def 4 )(d;) = ~Te] SyW.; + NTdy,

N

vay € 19(dy) = T(e] SiAW ;)% +75, Z — 2NT(615)°, (B.1)

where d;; = (NT)~'5.2 Zthl(SMKt — Ziy)"(W,Y;) and 62 = (NT)7' S, (SmY: —
Zy) " (SmY; — Zy7y). Given the mth estimator cijm) for j € M, we could approximate
the quasi log-likelihood function with respect to d; at cig-m) by omitting some constatns

as

J

j 0(j m m — m 2(m 2
(OMIOS) ~ 2™ + o (dy = ™) = 270 (d = d™)

J

2
~ -2 lvgj <d] o (02] )) U§j )~ d( )> )

where v( = () (d(m ), and *ugjn) = g(j)(@m)). In addition, let z](.m) = (Ué;n)) 12157;1) +

dg-m). The approximated objective function in the jth dimension takes the form

Qu(d;) = v5(d; — 2\™) + W™ A dy], (B.2)

where wj(-m) = p;(|d§m>|) is the weighted parameter. As a result, (B.2) takes an L;
penalty form, which can be optimized and the closed form solution can be obtained.
However, note in the approximated objective function the quadratic form (d — z](-m))2
is weighted by the scaling value ’U;;-n), which varies across different nodes. This could
result in a unstable and discontinuous solution of the penalty function (Breheny and
Huang, 2011). Moreover, it loses the consistent interpretation of penalty parameters.

To solve this issue, we follow Breheny and Huang (2011) to adopt an adaptive rescaling

technique by using a scaling parameter, which transforms the objective function in
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(B.2) to the following one,
Qildy) = (d; = ™) + ™ |d; . (B.3)

This is equivalent to solve a univariate Lasso problem and the closed form solution

(m)
J
(m)

)| —w;,0). The estimation procedure is

m+1)

= sgn(z](-m))(]zj(-m)\ —w;"™);, where sgn(-) denotes the sign

(m)

J

can be obtained as 025

m

function and (|z](m)\ —w™), = max(|z](-

summarized in Algorithm 1.

Remark. It should be noted that in the first step, solving (B.3) essentially yields the
Lasso estimator. To avoid eliminating portal nodes at the beginning, it is recommended
that the tuning parameter \(?) should be sufficiently small. We follow the advice of

Wang et al. (2013) to set A® = M\ with a small = 1/log(NT).
Appendiz B.2: Simulation of the QMLE Estimation and Inference

In this section, we conduct the simulation experiment to verify the model inference
result. We set the first ny, = 10 nodes to be the portal nodes. Next, we use the three
examples in Section 4.1 to construct the network structure among the non-portal
nodes. The other settings are the same with the simulation study in Section 4.1. The
experiment is replicated for 100 times. In each replication, M is constructed by the

all the portal nodes, and other 5 non-portal nodes with highest nodal in-degrees.

To evaluate the estimation performance, we calculate the average RMSE for the es-

timated parameters, i.e., RMSE,; = S21% {| M|~ ZjeM(djr) —d;)?/100}Y/2, RMSE, =
S A — 4]12/100}2, where gy) and 5 is the QMLE estimation obtained
at the rth replication. In addition, the 95% confidence interval is constructed for
: -~ ~() ~ ~(r) . A
both d; and 7; as CIY) = (d; — 2097SEq, . d; + 200755E,, ), and CIY) = (3, —
20,975S/E(7:)ﬁj + 20,9758/]?32?), where gEdj and éj\EW are the root square of the diago-

nal elements of asymptotic covariance given in Theorem 2, and z, is the ath quantile

22



of the standard normal distribution. Then we report the average coverage probabil-
ity (CP) for dy and ~y respectively as CP,; = W > iem S I(d; € CIEZ;)) and
CP, = %Op ?:1 271«0:01 I(y; € CIE;;))-

The results are summarized in Table 1. First, the RMSE values are decreased as N
and T increase, which implies the consistency of the resulting QMLE estimator. Next,

the coverage probabilities of both estimators are stable at 95% level. This corroborates

with the asymptotic normality result given in Theorem 2.
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