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We first present the regularity conditions for Theorems 1 to 4 in this Web Appendix.

Regularity Conditions

(A) The random variable U has a bounded support Y. Its density function f(u) is Lipschitz

continuous and bounded from 0 on its support.
(B) The true unknown smoothing function «ag(u) has a continuous second derivative.

(C) K(u) is a positive, bounded, and symmetric function with compact support. Further-
more, K (u) satisfies the Lipschitz condition. The functions u*K (u) and u3K’(u) are

bounded and [ u*K (u)du < co.
(D) nh® — 0 and nh?/{In(h)}* — occ.

(E) For any x, g(x,3) is a continuous function of 3 and the second derivatives of g(x, 3)

with respect to B are continuous, 3 € B, where B is a compact set.

(F) Let d be the dimension of 3, and

J (xi,8) = [09(xi,8)/0B) 41 » and 9" (xi, B) = [82g(xi,ﬁ)/8ﬁaﬁT}dxd,

and Vech{g"(x,3)} is the d x (d + 1)/2-vector of all second derivatives of g(x,3) with
respect to 8. E{g'(x,8)}**, E[E{¢'(x, 8)|U}*?], and E(E[{Vech{g"(x, 3)}|U]**) are

bounded in a neighborhood of 3.

(G) E{llg'(x, B)[I*} < oo, E[||Vech{g"(x, B)}||*] < oo.

(H) ||Vech{g"(x,8)}|| < B(x) for all B in a neighborhood of B, and E{||B(x)[|*} < cc.



Let

1 Un—u
n nx2

and W, = diag{ Kp,(u; — u), - , Kp(u, —u)}. By definition of Sj,
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Let ¢, = {—_:}Eh)}l/2 + h?,

and

go=n"") lg'(xi:8y) — E{g'(x: Bo)|U = ui}]e:.

i=1

The following lemma is used in the proof of Theorems 1 and 2 repeatedly.

Lemma 1. Under Conditions (A) — (H), it follows that

%g'(ﬂo)T(In — S (L, — S1)g'(By) = A{1 +0,(1)}, (A1)
%g/(ﬂ())T(]n - Sh)T<In — Suy —8(Bo)} =& + OP<CEL)' (A.2)

Lemma 1 can be proved by using Proposition 4 in Marc and Silverman (1982) and related

techniques in the proofs of Lemmas 7.1 to 7.4 in Fan and Huang (2005).



Proof of Theorem 1. Let Q(3) denote the j-th component of Q'(3), and Q’f(3) be the j-row

of Q"(B). Using Taylor’s expansion, for j = 1,--- ,d,
0= Q}(B) = Q(By) +Q](B;)(B ~ By),

where 37 lies between B and B,. Under conditions (A)-(H), it can be shown that

1

S Q(8) = A{1+ 0,1},

in probability, where A; is the j-row of A. Using (A.2), it follows that

n~'Q'(By) = —2n7'g/(By)" (In — Sn)" (In — Sy — 8(Bo)} = =26 + Op(cp).

Thus,
VIALL 4 0,(DHB = By) = Vi l&w + Op(2)} = Vina + op(1),

as y/nc2 — 0 by Condition (D). Note that,

n

&o=n"") lg'(xi:8y) — E{g'(x: Bo)|U = ui}le:.

i=1

Using the Slutsky theorem and the central limit theorem, it follows that

V(B — By) == N(0,0*A™").

Proof of Theorem 2. Let g(8) = (9(x1,8), -+, 9(x,,3))". Note that

(A.3)

(A4)

Br—Bo=1{&'(B1)" (L = S1)" (I — 51 (B1)} '€/ (B)" (Lo — 81)" (I — Si){z — & (B1)Bo },

~

where z = (21, -+, 2,)7 (defined in Section 2.2) and g'(8;) = (¢'(x1:8;),- - » ¢ (xn: 8;))7.

It has been shown in the earlier version of this paper (Li and Nie, 2006) that

&' (B))" (In = S1)" (I — Sn)g'(B;) = A{1+ 0p(1)}.
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We next show that
—=g'(B)" (I — Sn)" (I — Si)(z — &'(B1)By) = Vnén + op(1). (A.6)
Using the definition of z, we have
—g'(B))By =y —&(B;) +&(B) (B — Bo)
and it follows by (A.2) that
SR (B0 (= 5T (L = S,y — B(B0)} = Vit + Op(v/ic2) = Vi, +op(1).
Thus, to establish (A.6), it is enough to show that
(80”1, = 50)"(1, — S\ )}{e(8) — &(B) + £(B)(By — B} =01, (A7)
and
(B~ £ (B)Y (1= S)T(L S}z —€(BB)} = o). (A3
By straightforward calculation, the left-hand side of (A.7) is of the order
Or(V/ilB; — Boll2) = Op(1/v0)

as ||8,—Bo|| = Op(n='/2). Furthermore, the left-hand side of (A.8) is of the order Op(c,||8;—

Boll) = Op(cn/+/n). Thus, (A.6) holds.
Using (A.5), (A.6), it follows

V(B = Bo) = A{l +op(1)} {Vné + 0p(1)}.

By the Slutsky Theorem and the central limit theorem, we have
V(B — By) == N(0,02A7).

This completes the proof of Theorem 2.



FEquivalence between algorithm (2.12) and Fisher scoring algorithm

We here demonstrate algorithm (2.12) is equivalent to using the Fisher scoring algorithm
to minimize Q(A) in (2.5). The Newton-Raphson algorithm to minimize Q(3) in (2.5) is to
iteratively compute

~ (m+1

Note that

E{Q"(By)} = 2E{g(By)" (I — Si)" (I — Sn)g'(By)}=1(By)

which corresponds to the Fisher information matrix. Thus, the Fisher scoring algorithm is
to iteratively compute

(m)

~ 3" ™),

) = Q{g’(B(m))T([ — Sp)T(I — Sh)g/(,@(m))}. Thus the corresponding Fisher

5 (m)

where (3

score algorithm is to iteratively calculate
2(m+1) 2(m) 1 () PN
g = B+ {g @) = s 1 -s0g(8™)}
177 (m) ~(m)
xg/ (8" (1= 51" (1 - ) {y - e(8™)}.

(m)

where g(8™) = (g(x1, 8™), -+ , g3, B8™)). Since 20" =y — g(B8™) + g/(8"")78"",

it follows that
- (m - (m 3mN T gm
8" = {g ™) = s - sg (B} g (B = ST (L - S

which is (2.12).

Proof of Theorem 4. Let yi = y; — g(xi; By). Thus,

y; = alu;) + &



Let &* and &*(-) be the estimate of o under Hy and Hj, respectively. Denote RSS*(Hy) =

S (yr — @)% and RSS*(H,y) = SO0 {yr — é*(w;)}2. Define
GLRT} = (n/2)(RSS*(Hy) — RSS*(Hy))/RSS*(H,)
By Theorem 5 of Fan, Zhang and Zhang (2001), it follows that
rkGLRT ~ x; .
Note that ||3 — Bo|| = Op(n~/2). By Lemma 1 and the Taylor expansion, we have
{RSS(H,) — RSS™(Hy)} = —n(B — By) "A(B — By) + op(1),
and under Hy, it can be shown by using theory of linear regression that
{RSS(Ho) — RSS™(Ho)} = —n(B — By)"A(B — By) + op(1).

The proof is completed by noticing that RSS*(H;)/RSS(H;) — 1 in probability.
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