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We first present the regularity conditions for Theorems 1 to 4 in this Web Appendix.

Regularity Conditions

(A) The random variable U has a bounded support U . Its density function f(u) is Lipschitz

continuous and bounded from 0 on its support.

(B) The true unknown smoothing function α0(u) has a continuous second derivative.

(C) K(u) is a positive, bounded, and symmetric function with compact support. Further-

more, K(u) satisfies the Lipschitz condition. The functions u3K(u) and u3K ′(u) are

bounded and
∫

u4K(u) du < ∞.

(D) nh8 → 0 and nh2/{ln(h)}2 →∞.

(E) For any x, g(x,β) is a continuous function of β and the second derivatives of g(x,β)

with respect to β are continuous, β ∈ B, where B is a compact set.

(F) Let d be the dimension of β, and

g′(xi,β) = [∂g(xi, β)/∂β]d×1 , and g′′(xi, β) =
[
∂2g(xi,β)/∂β∂βT

]
d×d

,

and Vech{g′′(x,β)} is the d× (d + 1)/2-vector of all second derivatives of g(x,β) with

respect to β. E{g′(x,β)}⊗2, E[E{g′(x,β)|U}⊗2], and E(E[{Vech{g′′(x,β)}|U]⊗2) are

bounded in a neighborhood of β0.

(G) E{‖g′(x,β)‖4} < ∞, E[‖Vech{g′′(x, β)}‖4] < ∞.

(H) ‖Vech{g′′(x,β)}‖ ≤ B(x) for all β in a neighborhood of β0 and E{‖B(x)‖4} < ∞.
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Let

Du =




1 u1−u
n

. .

. .

. .

1 un−u
n




n×2

,

and Wu = diag{Kh(u1 − u), · · · , Kh(un − u)}. By definition of Sh,

Sh =




(1, 0)(DT
u1

Wu1Du1)
−1DT

u1
Wu1

.

.

.

(1, 0)(DT
un

WunDun)−1DT
un

Wun




n×n

.

Let cn = {− ln(h)
nh

}1/2 + h2,

g′(β) = (g′(x1, β), · · · , g′(xn,β))T ,

and

ξn = n−1

n∑
i=1

[g′(xi; β0)− E{g′(x; β0)|U = ui}]εi.

The following lemma is used in the proof of Theorems 1 and 2 repeatedly.

Lemma 1. Under Conditions (A) — (H), it follows that

1

n
g′(β0)

T (In − Sh)
T (In − Sh)g

′(β0) = A{1 + op(1)}, (A.1)

1

n
g′(β0)

T (In − Sh)
T (In − Sh){y − g(β0)} = ξn + Op(c

2
n). (A.2)

Lemma 1 can be proved by using Proposition 4 in Marc and Silverman (1982) and related

techniques in the proofs of Lemmas 7.1 to 7.4 in Fan and Huang (2005).

2



Proof of Theorem 1. Let Q′
j(β) denote the j-th component of Q′(β), and Q′′

j (β) be the j-row

of Q′′(β). Using Taylor’s expansion, for j = 1, · · · , d,

0 = Q′
j(β̂) = Q′

j(β0) + Q′′
j (β

∗
j)(β̂ − β0), (A.3)

where β∗j lies between β̂ and β0. Under conditions (A)-(H), it can be shown that

1

2n
Q′′

j (β
∗
j) = Aj{1 + op(1)},

in probability, where Aj is the j-row of A. Using (A.2), it follows that

n−1Q′(β0) = −2n−1g′(β0)
T (In − Sh)

T (In − Sh){y − g(β0)} = −2ξn + Op(c
2
n). (A.4)

Thus,

√
nA{1 + op(1)}(β̂ − β0) =

√
n{ξn + Op(c

2
n)} =

√
nξn + oP (1),

as
√

nc2
n → 0 by Condition (D). Note that,

ξn = n−1

n∑
i=1

[g′(xi; β0)− E{g′(x; β0)|U = ui}]εi.

Using the Slutsky theorem and the central limit theorem, it follows that

√
n(β̂ − β0)

D−→N(0, σ2A−1).

Proof of Theorem 2. Let g(β) = (g(x1,β), · · · , g(xn,β))T . Note that

β̂L −β0 = {g′(β̂I)
T (In − Sh)

T (In − Sh)g
′(β̂I)}−1g′(β̂I)

T (In − Sh)
T (In − Sh){z− g′(β̂I)β0},

where z = (z1, · · · , zn)T (defined in Section 2.2) and g′(β̂I) = (g′(x1; β̂I), · · · , g′(xn; β̂I))
T .

It has been shown in the earlier version of this paper (Li and Nie, 2006) that

1

n
g′(β̂I)

T (In − Sh)
T (In − Sh)g

′(β̂I) = A{1 + op(1)}. (A.5)
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We next show that

1√
n
g′(β̂I)

T (In − Sh)
T (In − Sh)(z− g′(β̂I)β0) =

√
nξn + oP (1). (A.6)

Using the definition of z, we have

z− g′(β̂I)β0 = y − g(β̂I) + g′(β̂I)(β̂I − β0)

and it follows by (A.2) that

1√
n
g′(β0)

T (In − Sh)
T (In − Sh){y − g(β0)} =

√
nξn + OP (

√
nc2

n) =
√

nξn + oP (1).

Thus, to establish (A.6), it is enough to show that

1√
n
g′(β0)

T (In − Sh)
T (In − Sh){g(β0)− g(β̂I) + g′(β̂I)(β̂I − β0)} = op(1), (A.7)

and

1√
n
{g′(β̂I)− g′(β0)}T (In − Sh)

T (In − Sh){z− g′(β̂I)β0} = op(1). (A.8)

By straightforward calculation, the left-hand side of (A.7) is of the order

OP (
√

n‖β̂I − β0‖2) = OP (1/
√

n)

as ‖β̂I−β0‖ = OP (n−1/2). Furthermore, the left-hand side of (A.8) is of the order OP (cn‖β̂I−
β0‖) = OP (cn/

√
n). Thus, (A.6) holds.

Using (A.5), (A.6), it follows

√
n(β̂L − β0) = A{1 + oP (1)}−1{√nξn + oP (1)}.

By the Slutsky Theorem and the central limit theorem, we have

√
n(β̂L − β0)

D−→N(0, σ2A−1).

This completes the proof of Theorem 2.
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Equivalence between algorithm (2.12) and Fisher scoring algorithm

We here demonstrate algorithm (2.12) is equivalent to using the Fisher scoring algorithm

to minimize Q(β) in (2.5). The Newton-Raphson algorithm to minimize Q(β) in (2.5) is to

iteratively compute

β̂
(m+1)

= β̂
(m) −Q′′(β̂

(m)
)−1Q′(β̂

(m)
).

Note that

E{Q′′(β0)} = 2E{g′(β0)
T (I − Sh)

T (I − Sh)g
′(β0)}=̂I(β0)

which corresponds to the Fisher information matrix. Thus, the Fisher scoring algorithm is

to iteratively compute

β̂
(m+1)

= β̂
(m) − Î−1(β̂

(m)
)Q′(β̂

(m)
),

where Î(β̂
(m)

) = 2{g′(β̂(m)
)T (I − Sh)

T (I − Sh)g
′(β̂

(m)
)}. Thus the corresponding Fisher

score algorithm is to iteratively calculate

β̂
(m+1)

= β̂
(m)

+
{
g′(β̂

(m)
)T (I − Sh)

T (I − Sh)g
′(β̂

(m)
)
}−1

×g′(β̂
(m)

)T (I − Sh)
T (I − Sh)

{
y − g(β̂

(m)
)
}

,

where g(β(m)) = (g(x1,β
(m)), · · · , g(xn, β

(m)))T . Since z(m) = y − g(β̂
(m)

) + g′(β̂
(m)

)T β̂
(m)

,

it follows that

β̂
(m+1)

=
{
g′(β̂

(m)
)T (I − Sh)

T (I − Sh)g
′(β̂

(m)
)
}−1

g′(β̂
(m)

)T (I − Sh)
T (I − Sh)z

(m).

which is (2.12).

Proof of Theorem 4. Let y∗i = yi − g(xi; β0). Thus,

y∗i = α(ui) + εi.
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Let α̃∗ and α̂∗(·) be the estimate of α under H0 and H1, respectively. Denote RSS∗(H0) =

∑n
i=1(y

∗
i − α̃∗)2 and RSS∗(H1) =

∑n
i=1{y∗i − α̂∗(ui)}2. Define

GLRT∗
0 = (n/2)(RSS∗(H0)− RSS∗(H1))/RSS∗(H1)

By Theorem 5 of Fan, Zhang and Zhang (2001), it follows that

rKGLRT∗
0

a∼χ2
δn

.

Note that ‖β̂ − β0‖ = OP (n−1/2). By Lemma 1 and the Taylor expansion, we have

{RSS(H1)− RSS∗(H1)} = −n(β̂ − β0)
TA(β̂ − β0) + oP (1),

and under H0, it can be shown by using theory of linear regression that

{RSS(H0)− RSS∗(H0)} = −n(β̂ − β0)
TA(β̂ − β0) + oP (1).

The proof is completed by noticing that RSS∗(H1)/RSS(H1) → 1 in probability.
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