Web-based Supplementary Material for "Effective Inference Procedures for Partially Nonlinear Models" by Runze Li and Lei Nie

We first present the regularity conditions for Theorems 1 to 4 in this Web Appendix.

Regularity Conditions

(A) The random variable U has a bounded support \mathcal{U}. Its density function $f(u)$ is Lipschitz continuous and bounded from 0 on its support.
(B) The true unknown smoothing function $\alpha_{0}(u)$ has a continuous second derivative.
(C) $K(u)$ is a positive, bounded, and symmetric function with compact support. Furthermore, $K(u)$ satisfies the Lipschitz condition. The functions $u^{3} K(u)$ and $u^{3} K^{\prime}(u)$ are bounded and $\int u^{4} K(u) d u<\infty$.
(D) $n h^{8} \rightarrow 0$ and $n h^{2} /\{\ln (h)\}^{2} \rightarrow \infty$.
(E) For any $\mathbf{x}, g(\mathbf{x}, \boldsymbol{\beta})$ is a continuous function of $\boldsymbol{\beta}$ and the second derivatives of $g(\mathbf{x}, \boldsymbol{\beta})$ with respect to $\boldsymbol{\beta}$ are continuous, $\boldsymbol{\beta} \in \mathcal{B}$, where \mathcal{B} is a compact set.
(F) Let d be the dimension of $\boldsymbol{\beta}$, and

$$
g^{\prime}\left(\mathbf{x}_{i}, \boldsymbol{\beta}\right)=\left[\partial g\left(\mathbf{x}_{i}, \boldsymbol{\beta}\right) / \partial \boldsymbol{\beta}\right]_{d \times 1}, \text { and } g^{\prime \prime}\left(\mathbf{x}_{i}, \boldsymbol{\beta}\right)=\left[\partial^{2} g\left(\mathbf{x}_{i}, \boldsymbol{\beta}\right) / \partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{T}\right]_{d \times d}
$$

and $\operatorname{Vech}\left\{\mathrm{g}^{\prime \prime}(\mathbf{x}, \boldsymbol{\beta})\right\}$ is the $d \times(d+1) / 2$-vector of all second derivatives of $g(\mathbf{x}, \boldsymbol{\beta})$ with respect to $\boldsymbol{\beta}$. $\mathrm{E}\left\{g^{\prime}(\mathbf{x}, \boldsymbol{\beta})\right\}^{\otimes 2}, \mathrm{E}\left[\mathrm{E}\left\{g^{\prime}(\mathbf{x}, \boldsymbol{\beta}) \mid U\right\}^{\otimes 2}\right]$, and $\mathrm{E}\left(\mathrm{E}\left[\left\{\operatorname{Vech}\left\{\mathrm{g}^{\prime \prime}(\mathbf{x}, \boldsymbol{\beta})\right\} \mid \mathrm{U}\right]^{\otimes 2}\right)\right.$ are bounded in a neighborhood of $\boldsymbol{\beta}_{0}$.
(G) $\mathrm{E}\left\{\left\|g^{\prime}(\mathbf{x}, \boldsymbol{\beta})\right\|^{4}\right\}<\infty, \mathrm{E}\left[\left\|\operatorname{Vech}\left\{\mathrm{g}^{\prime \prime}(\mathbf{x}, \boldsymbol{\beta})\right\}\right\|^{4}\right]<\infty$.
(H) $\left\|\operatorname{Vech}\left\{g^{\prime \prime}(\mathbf{x}, \boldsymbol{\beta})\right\}\right\| \leq B(\mathbf{x})$ for all $\boldsymbol{\beta}$ in a neighborhood of $\boldsymbol{\beta}_{0}$ and $\mathrm{E}\left\{\|B(\mathbf{x})\|^{4}\right\}<\infty$.

Let

$$
D_{u}=\left(\begin{array}{cc}
1 & \frac{u_{1}-u}{n} \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
1 & \frac{u_{n}-u}{n}
\end{array}\right)_{n \times 2}
$$

and $W_{u}=\operatorname{diag}\left\{K_{h}\left(u_{1}-u\right), \cdots, K_{h}\left(u_{n}-u\right)\right\}$. By definition of S_{h},

$$
S_{h}=\left(\begin{array}{c}
(1,0)\left(D_{u_{1}}^{T} W_{u_{1}} D_{u_{1}}\right)^{-1} D_{u_{1}}^{T} W_{u_{1}} \\
\cdot \\
\cdot \\
(1,0)\left(D_{u_{n}}^{T} W_{u_{n}} D_{u_{n}}\right)^{-1} D_{u_{n}}^{T} W_{u_{n}}
\end{array}\right)_{n \times n}
$$

Let $c_{n}=\left\{\frac{-\ln (h)}{n h}\right\}^{1 / 2}+h^{2}$,

$$
\mathbf{g}^{\prime}(\boldsymbol{\beta})=\left(g^{\prime}\left(\mathbf{x}_{1}, \boldsymbol{\beta}\right), \cdots, g^{\prime}\left(\mathbf{x}_{n}, \boldsymbol{\beta}\right)\right)^{T}
$$

and

$$
\xi_{n}=n^{-1} \sum_{i=1}^{n}\left[g^{\prime}\left(\mathbf{x}_{i} ; \boldsymbol{\beta}_{0}\right)-E\left\{g^{\prime}\left(\mathbf{x} ; \boldsymbol{\beta}_{0}\right) \mid U=u_{i}\right\}\right] \varepsilon_{i}
$$

The following lemma is used in the proof of Theorems 1 and 2 repeatedly.
Lemma 1. Under Conditions (A) - (H), it follows that

$$
\begin{align*}
& \frac{1}{n} \mathbf{g}^{\prime}\left(\boldsymbol{\beta}_{0}\right)^{T}\left(I_{n}-S_{h}\right)^{T}\left(I_{n}-S_{h}\right) \mathbf{g}^{\prime}\left(\boldsymbol{\beta}_{0}\right)=\mathbf{A}\left\{1+o_{p}(1)\right\} \tag{A.1}\\
& \frac{1}{n} \mathbf{g}^{\prime}\left(\boldsymbol{\beta}_{0}\right)^{T}\left(I_{n}-S_{h}\right)^{T}\left(I_{n}-S_{h}\right)\left\{\mathbf{y}-\mathbf{g}\left(\boldsymbol{\beta}_{0}\right)\right\}=\xi_{n}+O_{p}\left(c_{n}^{2}\right) \tag{A.2}
\end{align*}
$$

Lemma 1 can be proved by using Proposition 4 in Marc and Silverman (1982) and related techniques in the proofs of Lemmas 7.1 to 7.4 in Fan and Huang (2005).

Proof of Theorem 1. Let $Q_{j}^{\prime}(\boldsymbol{\beta})$ denote the j-th component of $Q^{\prime}(\boldsymbol{\beta})$, and $Q_{j}^{\prime \prime}(\boldsymbol{\beta})$ be the j-row of $Q^{\prime \prime}(\boldsymbol{\beta})$. Using Taylor's expansion, for $j=1, \cdots, d$,

$$
\begin{equation*}
0=Q_{j}^{\prime}(\hat{\boldsymbol{\beta}})=Q_{j}^{\prime}\left(\boldsymbol{\beta}_{0}\right)+Q_{j}^{\prime \prime}\left(\boldsymbol{\beta}_{j}^{*}\right)\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right), \tag{A.3}
\end{equation*}
$$

where $\boldsymbol{\beta}_{j}^{*}$ lies between $\hat{\boldsymbol{\beta}}$ and $\boldsymbol{\beta}_{0}$. Under conditions (A)-(H), it can be shown that

$$
\frac{1}{2 n} Q_{j}^{\prime \prime}\left(\boldsymbol{\beta}_{j}^{*}\right)=A_{j}\left\{1+o_{p}(1)\right\}
$$

in probability, where A_{j} is the j-row of \mathbf{A}. Using (A.2), it follows that

$$
\begin{equation*}
n^{-1} Q^{\prime}\left(\boldsymbol{\beta}_{0}\right)=-2 n^{-1} \mathbf{g}^{\prime}\left(\boldsymbol{\beta}_{0}\right)^{T}\left(I_{n}-S_{h}\right)^{T}\left(I_{n}-S_{h}\right)\left\{\mathbf{y}-\mathbf{g}\left(\boldsymbol{\beta}_{0}\right)\right\}=-2 \xi_{n}+O_{p}\left(c_{n}^{2}\right) \tag{A.4}
\end{equation*}
$$

Thus,

$$
\sqrt{n} \mathbf{A}\left\{1+o_{p}(1)\right\}\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)=\sqrt{n}\left\{\xi_{n}+O_{p}\left(c_{n}^{2}\right)\right\}=\sqrt{n} \xi_{n}+o_{P}(1)
$$

as $\sqrt{n} c_{n}^{2} \rightarrow 0$ by Condition (D). Note that,

$$
\xi_{n}=n^{-1} \sum_{i=1}^{n}\left[g^{\prime}\left(\mathbf{x}_{i} ; \boldsymbol{\beta}_{0}\right)-E\left\{g^{\prime}\left(\mathbf{x} ; \boldsymbol{\beta}_{0}\right) \mid U=u_{i}\right\}\right] \varepsilon_{i} .
$$

Using the Slutsky theorem and the central limit theorem, it follows that

$$
\sqrt{n}\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right) \xrightarrow{\mathcal{D}} N\left(0, \sigma^{2} \mathbf{A}^{-1}\right) .
$$

Proof of Theorem 2. Let $\mathbf{g}(\boldsymbol{\beta})=\left(g\left(\mathbf{x}_{1}, \boldsymbol{\beta}\right), \cdots, g\left(\mathbf{x}_{n}, \boldsymbol{\beta}\right)\right)^{T}$. Note that
$\hat{\boldsymbol{\beta}}_{L}-\boldsymbol{\beta}_{0}=\left\{\mathbf{g}^{\prime}\left(\hat{\boldsymbol{\beta}}_{I}\right)^{T}\left(I_{n}-S_{h}\right)^{T}\left(I_{n}-S_{h}\right) \mathbf{g}^{\prime}\left(\hat{\boldsymbol{\beta}}_{I}\right)\right\}^{-1} \mathbf{g}^{\prime}\left(\hat{\boldsymbol{\beta}}_{I}\right)^{T}\left(I_{n}-S_{h}\right)^{T}\left(I_{n}-S_{h}\right)\left\{\mathbf{z}-\mathbf{g}^{\prime}\left(\hat{\boldsymbol{\beta}}_{I}\right) \boldsymbol{\beta}_{0}\right\}$,
where $\mathbf{z}=\left(z_{1}, \cdots, z_{n}\right)^{T}\left(\right.$ defined in Section 2.2) and $\mathbf{g}^{\prime}\left(\hat{\boldsymbol{\beta}}_{I}\right)=\left(g^{\prime}\left(\mathbf{x}_{1} ; \hat{\boldsymbol{\beta}}_{I}\right), \cdots, g^{\prime}\left(\mathbf{x}_{n} ; \hat{\boldsymbol{\beta}}_{I}\right)\right)^{T}$. It has been shown in the earlier version of this paper (Li and Nie, 2006) that

$$
\begin{equation*}
\frac{1}{n} \mathbf{g}^{\prime}\left(\hat{\boldsymbol{\beta}}_{I}\right)^{T}\left(I_{n}-S_{h}\right)^{T}\left(I_{n}-S_{h}\right) \mathbf{g}^{\prime}\left(\hat{\boldsymbol{\beta}}_{I}\right)=\mathbf{A}\left\{1+o_{p}(1)\right\} \tag{A.5}
\end{equation*}
$$

We next show that

$$
\begin{equation*}
\frac{1}{\sqrt{n}} \mathbf{g}^{\prime}\left(\hat{\boldsymbol{\beta}}_{I}\right)^{T}\left(I_{n}-S_{h}\right)^{T}\left(I_{n}-S_{h}\right)\left(\mathbf{z}-\mathbf{g}^{\prime}\left(\hat{\boldsymbol{\beta}}_{I}\right) \boldsymbol{\beta}_{0}\right)=\sqrt{n} \xi_{n}+o_{P}(1) \tag{A.6}
\end{equation*}
$$

Using the definition of \mathbf{z}, we have

$$
\mathbf{z}-\mathbf{g}^{\prime}\left(\hat{\boldsymbol{\beta}}_{I}\right) \boldsymbol{\beta}_{0}=\mathbf{y}-\mathbf{g}\left(\hat{\boldsymbol{\beta}}_{I}\right)+\mathbf{g}^{\prime}\left(\hat{\boldsymbol{\beta}}_{I}\right)\left(\hat{\boldsymbol{\beta}}_{I}-\boldsymbol{\beta}_{0}\right)
$$

and it follows by (A.2) that

$$
\frac{1}{\sqrt{n}} \mathbf{g}^{\prime}\left(\boldsymbol{\beta}_{0}\right)^{T}\left(I_{n}-S_{h}\right)^{T}\left(I_{n}-S_{h}\right)\left\{\mathbf{y}-\mathbf{g}\left(\boldsymbol{\beta}_{0}\right)\right\}=\sqrt{n} \xi_{n}+O_{P}\left(\sqrt{n} c_{n}^{2}\right)=\sqrt{n} \xi_{n}+o_{P}(1)
$$

Thus, to establish (A.6), it is enough to show that

$$
\begin{equation*}
\frac{1}{\sqrt{n}} \mathbf{g}^{\prime}\left(\boldsymbol{\beta}_{0}\right)^{T}\left(I_{n}-S_{h}\right)^{T}\left(I_{n}-S_{h}\right)\left\{\mathbf{g}\left(\boldsymbol{\beta}_{0}\right)-\mathbf{g}\left(\hat{\boldsymbol{\beta}}_{I}\right)+\mathbf{g}^{\prime}\left(\hat{\boldsymbol{\beta}}_{I}\right)\left(\hat{\boldsymbol{\beta}}_{I}-\boldsymbol{\beta}_{0}\right)\right\}=o_{p}(1) \tag{A.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\sqrt{n}}\left\{\mathbf{g}^{\prime}\left(\hat{\boldsymbol{\beta}}_{I}\right)-\mathbf{g}^{\prime}\left(\boldsymbol{\beta}_{0}\right)\right\}^{T}\left(I_{n}-S_{h}\right)^{T}\left(I_{n}-S_{h}\right)\left\{\mathbf{z}-\mathbf{g}^{\prime}\left(\hat{\boldsymbol{\beta}}_{I}\right) \boldsymbol{\beta}_{0}\right\}=o_{p}(1) \tag{A.8}
\end{equation*}
$$

By straightforward calculation, the left-hand side of (A.7) is of the order

$$
O_{P}\left(\sqrt{n}\left\|\hat{\boldsymbol{\beta}}_{I}-\boldsymbol{\beta}_{0}\right\|^{2}\right)=O_{P}(1 / \sqrt{n})
$$

as $\left\|\hat{\boldsymbol{\beta}}_{I}-\boldsymbol{\beta}_{0}\right\|=O_{P}\left(n^{-1 / 2}\right)$. Furthermore, the left-hand side of (A.8) is of the order $O_{P}\left(c_{n} \| \hat{\boldsymbol{\beta}}_{I}-\right.$ $\left.\boldsymbol{\beta}_{0} \|\right)=O_{P}\left(c_{n} / \sqrt{n}\right)$. Thus, (A.6) holds.

Using (A.5), (A.6), it follows

$$
\sqrt{n}\left(\hat{\boldsymbol{\beta}}_{L}-\boldsymbol{\beta}_{0}\right)=\mathbf{A}\left\{1+o_{P}(1)\right\}^{-1}\left\{\sqrt{n} \xi_{n}+o_{P}(1)\right\} .
$$

By the Slutsky Theorem and the central limit theorem, we have

$$
\sqrt{n}\left(\hat{\boldsymbol{\beta}}_{L}-\boldsymbol{\beta}_{0}\right) \xrightarrow{\mathcal{D}} N\left(0, \sigma^{2} \mathbf{A}^{-1}\right) .
$$

This completes the proof of Theorem 2.

Equivalence between algorithm (2.12) and Fisher scoring algorithm
We here demonstrate algorithm (2.12) is equivalent to using the Fisher scoring algorithm to minimize $Q(\boldsymbol{\beta})$ in (2.5). The Newton-Raphson algorithm to minimize $Q(\boldsymbol{\beta})$ in (2.5) is to iteratively compute

$$
\hat{\boldsymbol{\beta}}^{(m+1)}=\hat{\boldsymbol{\beta}}^{(m)}-Q^{\prime \prime}\left(\hat{\boldsymbol{\beta}}^{(m)}\right)^{-1} Q^{\prime}\left(\hat{\boldsymbol{\beta}}^{(m)}\right)
$$

Note that

$$
E\left\{Q^{\prime \prime}\left(\boldsymbol{\beta}_{0}\right)\right\}=2 E\left\{\mathbf{g}^{\prime}\left(\boldsymbol{\beta}_{0}\right)^{T}\left(I-S_{h}\right)^{T}\left(I-S_{h}\right) \mathbf{g}^{\prime}\left(\boldsymbol{\beta}_{0}\right)\right\} \hat{=} I\left(\boldsymbol{\beta}_{0}\right)
$$

which corresponds to the Fisher information matrix. Thus, the Fisher scoring algorithm is to iteratively compute

$$
\hat{\boldsymbol{\beta}}^{(m+1)}=\hat{\boldsymbol{\beta}}^{(m)}-\hat{I}^{-1}\left(\hat{\boldsymbol{\beta}}^{(m)}\right) Q^{\prime}\left(\hat{\boldsymbol{\beta}}^{(m)}\right),
$$

where $\hat{I}\left(\hat{\boldsymbol{\beta}}^{(m)}\right)=2\left\{\mathbf{g}^{\prime}\left(\hat{\boldsymbol{\beta}}^{(m)}\right)^{T}\left(I-S_{h}\right)^{T}\left(I-S_{h}\right) \mathbf{g}^{\prime}\left(\hat{\boldsymbol{\beta}}^{(m)}\right)\right\}$. Thus the corresponding Fisher score algorithm is to iteratively calculate

$$
\begin{aligned}
\hat{\boldsymbol{\beta}}^{(m+1)}= & \hat{\boldsymbol{\beta}}^{(m)}+\left\{\mathbf{g}^{\prime}\left(\hat{\boldsymbol{\beta}}^{(m)}\right)^{T}\left(I-S_{h}\right)^{T}\left(I-S_{h}\right) \mathbf{g}^{\prime}\left(\hat{\boldsymbol{\beta}}^{(m)}\right)\right\}^{-1} \\
& \times \mathbf{g}^{\prime}\left(\hat{\boldsymbol{\beta}}^{(m)}\right)^{T}\left(I-S_{h}\right)^{T}\left(I-S_{h}\right)\left\{y-\mathbf{g}\left(\hat{\boldsymbol{\beta}}^{(m)}\right)\right\},
\end{aligned}
$$

where $\mathbf{g}\left(\boldsymbol{\beta}^{(m)}\right)=\left(g\left(\mathbf{x}_{1}, \boldsymbol{\beta}^{(m)}\right), \cdots, g\left(\mathbf{x}_{n}, \boldsymbol{\beta}^{(m)}\right)\right)^{T}$. Since $\mathbf{z}^{(m)}=\mathbf{y}-\mathbf{g}\left(\hat{\boldsymbol{\beta}}^{(m)}\right)+\mathbf{g}^{\prime}\left(\hat{\boldsymbol{\beta}}^{(m)}\right)^{T} \hat{\boldsymbol{\beta}}^{(m)}$, it follows that

$$
\hat{\boldsymbol{\beta}}^{(m+1)}=\left\{\mathbf{g}^{\prime}\left(\hat{\boldsymbol{\beta}}^{(m)}\right)^{T}\left(I-S_{h}\right)^{T}\left(I-S_{h}\right) \mathbf{g}^{\prime}\left(\hat{\boldsymbol{\beta}}^{(m)}\right)\right\}^{-1} \mathbf{g}^{\prime}\left(\hat{\boldsymbol{\beta}}^{(m)}\right)^{T}\left(I-S_{h}\right)^{T}\left(I-S_{h}\right) \mathbf{z}^{(m)}
$$

which is (2.12).

Proof of Theorem 4. Let $y_{i}^{*}=y_{i}-g\left(\mathbf{x}_{i} ; \boldsymbol{\beta}_{0}\right)$. Thus,

$$
y_{i}^{*}=\alpha\left(u_{i}\right)+\varepsilon_{i} .
$$

Let $\tilde{\alpha}^{*}$ and $\hat{\alpha}^{*}(\cdot)$ be the estimate of α under H_{0} and H_{1}, respectively. Denote $\operatorname{RSS}^{*}\left(H_{0}\right)=$ $\sum_{i=1}^{n}\left(y_{i}^{*}-\tilde{\alpha}^{*}\right)^{2}$ and $\operatorname{RSS}^{*}\left(H_{1}\right)=\sum_{i=1}^{n}\left\{y_{i}^{*}-\hat{\alpha}^{*}\left(u_{i}\right)\right\}^{2}$. Define

$$
\operatorname{GLRT}_{0}^{*}=(n / 2)\left(\operatorname{RSS}^{*}\left(H_{0}\right)-\operatorname{RSS}^{*}\left(H_{1}\right)\right) / \operatorname{RSS}^{*}\left(H_{1}\right)
$$

By Theorem 5 of Fan, Zhang and Zhang (2001), it follows that

$$
r_{K} \mathrm{GLRT}_{0}^{*} \stackrel{a}{\sim} \chi_{\delta_{n}}^{2}
$$

Note that $\left\|\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right\|=O_{P}\left(n^{-1 / 2}\right)$. By Lemma 1 and the Taylor expansion, we have

$$
\left\{\operatorname{RSS}\left(H_{1}\right)-\operatorname{RSS}^{*}\left(H_{1}\right)\right\}=-n\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)^{T} \mathbf{A}\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)+o_{P}(1),
$$

and under H_{0}, it can be shown by using theory of linear regression that

$$
\left\{\operatorname{RSS}\left(H_{0}\right)-\operatorname{RSS}^{*}\left(H_{0}\right)\right\}=-n\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)^{T} \mathbf{A}\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)+o_{P}(1) .
$$

The proof is completed by noticing that $\operatorname{RSS}^{*}\left(H_{1}\right) / \operatorname{RSS}\left(H_{1}\right) \rightarrow 1$ in probability.

Additional References

Fan, J. and Huang, T. (2005). Profile Likelihood Inferences on semiparametric varyingcoefficient partially linear models. Bernoulli, 11, 1031-1057.

Li, R. and Nie, L. (2006). Efficient statistical inference procedures for partially nonlinear models and their applications. Available at http://www.stat.psu.edu/rli/research/nlnannTR.pdf

Mack, Y. P. and Silverman, B. W. (1982). Weak and strong uniform consistency of kernel regression estimates. Z. Wahrscheinlichkeitstheorie verw. Gebiete 61, 405-415.

