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Abstract This paper concerns the folded concave penalized sparse linear regres-
sion (FCPSLR), a class of popular sparse recovery methods. Although FCPSLR
yields desirable recovery performance when solved globally, computing a global
solution is NP-complete. Despite some existing statistical performance analyses on
local minimizers or on specific FCPSLR-based learning algorithms, it still remains
open questions whether local solutions that are known to admit fully polynomial-time
approximation schemes (FPTAS) may already be sufficient to ensure the statistical
performance, and whether that statistical performance can be non-contingent on the
specific designs of computing procedures. To address the questions, this paper presents
the following threefold results: (1) Any local solution (stationary point) is a sparse
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208 H. Liu et al.

estimator, under some conditions on the parameters of the folded concave penalties.
(2) Perhaps more importantly, any local solution satisfying a significant subspace
second-order necessary condition (S3ONC), which is weaker than the second-order
KKT condition, yields a bounded error in approximating the true parameter with high
probability. In addition, if the minimal signal strength is sufficient, the S3ONC solu-
tion likely recovers the oracle solution. This result also explicates that the goal of
improving the statistical performance is consistent with the optimization criteria of
minimizing the suboptimality gap in solving the non-convex programming formu-
lation of FCPSLR. (3) We apply (2) to the special case of FCPSLR with minimax
concave penalty and show that under the restricted eigenvalue condition, any S3ONC
solution with a better objective value than the Lasso solution entails the strong oracle
property. In addition, such a solution generates a model error (ME) comparable to the
optimal but exponential-time sparse estimator given a sufficient sample size, while the
worst-case ME is comparable to the Lasso in general. Furthermore, to guarantee the
S3ONC admits FPTAS.

Keywords Sparse recovery · Non-convex programming · NP-completeness · Folded
concave penalty · Lasso

Mathematics Subject Classification 90C26 · 90C90 · 62J05 · 62J07 · 68Q25

1 Introduction

Consider a linear regression model b j = a�
j ·xtrue + ε j , j = 1, · · · , n. Denote A :=

(a1·, . . . , an·)� ∈ �n×p, b := (b1, . . . , bn)�. and W := (ε1, . . . , εn)
� be the design

matrix, response vector and error vector, respectively. Our target is to reconstruct the
true parameter xtrue given only finitely many observations of data (A,b), when the
problem dimension p is allowed to be (much) larger than the sample size n but xtrue

is assumed to be sparse.
Following the literature (e.g., [5,22,26,36]), we quantify the recovery quality by

using model error (ME), absolute deviation (AD, i.e., �1 loss), and �2 loss:

ME:
1

n
‖A(x − xtrue)‖2; AD: |x − xtrue|; �2 loss: ‖x − xtrue‖. (1)

Here | · | and ‖ ·‖ denote the �1-norm and �2-norm, respectively. People also considers
the presence of the (strong) oracle property an important performance index [10,11,
13]. In [10], an estimator is said to have theoracle property if its asymptotic distribution
is the same as the oracle estimator (oracle solution). In [11], an estimator is said to
have the strong oracle property if with overwhelming probability, the estimator equals
the following oracle solution

xoracle ∈ arg inf
x∈�p : xi=0, ∀i∈Sc

1

2n
‖Ax − b‖2, (2)
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Folded concave penalized sparse linear regression… 209

where S := {i : xtruei �= 0} is called the true support set and its complement Sc :=
{i : xtruei = 0}. Let |S| be the cardinality of S. Throughout the paper it is assumed that
|S| << n << p and n > 1. As in [10], the oracle solution is a statistically desirable
solution that assumes a priori knowledge onS. Explicit bounds on the recovery quality
of the oracle solution in terms of ME, AD, and �2 loss can be obtained from theory of
least squares estimator [16]. Since S is unknown in practice, the use of (2) is merely
for theoretical purposes.

Statisticians [10,27] use penalized least squares method to recover xtrue:

inf
x:=(xi : 1≤i≤p)∈�p

[
f (x) := 1

2n
‖Ax − b‖2 +

p∑
i=1

Pλ(|xi |)
]

. (3)

The objective function in (3) is the sum of the least squares function and a nonnegative
penalty function Pλ that encourages sparsity. The choices of the penalty functions have
been studied in literature [12]. The penalized least squares with the �1 penalty, one of
the most popular penalties, yields the Lasso [27]:

xlasso ∈ arg inf
x∈�p

1

2n
‖Ax − b‖2 + λlasso|x|. (4)

For FCPSLR problem, Pλ is set to be a folded concave penalty (FCP) satisfying the
following properties for given a, λ ∈ �++: (i) Pλ(t) is non-decreasing and concave
in t ∈ �+ with Pλ(0) = 0 and Pλ(t) > 0 if t > 0; (ii) Pλ(t) is differentiable at any
t ∈ �+; (iii) the first derivative P ′

λ(t) = 0 for any t ≥ aλ; (iv) 0 ≤ P ′
λ(t) ≤ λ for any

t ≥ 0.
This paper will focus on two commonly used FCPs: the smoothly clipped abso-

lute deviation (SCAD, [10]), given as Pλ,SC AD(t) := λtI(0 ≤ t ≤ λ) +
1

a−1

(
−λ2

2 + aλt − 1
2 t

2
)
I(λ < t ≤ aλ) + 1

2 (a + 1)λ2I(t > aλ); and the mini-

max concave penalty (MCP, [35]), given as Pλ,MCP (t) := (λt − t2
2a )I(0 ≤ t ≤

aλ) + 1
2aλ2I(t > aλ), where a > 1 for SCAD and a > 0 for MCP. Here I( · ) is an

indicator function, and ( · )+ := max{0, · }.
As shown in [13], the FCP entails desirable properties, including “unbiasedness”,

“sparsity”, and “continuity”. Thus, FCP may be intuitively more preferable than the
Lasso and �p- penalties in general (0 ≤ p ≤ ∞). Furthermore, under some conditions,
global solutions to FCPSLR have the oracle property [37], while the Lasso does not
have the oracle property.

Nonetheless, the FCP renders (3) non-convex, and thus there are limited optimiza-
tion theories to analyze this problem. Existing solution techniques are also scarce
to solve this problem globally. [19] proposes perhaps the first global scheme called
MIPGO, which reformulates (3) into a mixed integer linear program (MIP), allowing
FCPSLR to be solved with theoretically ascertained global optimality. Still, the the-
oretical worst-case complexity of MIP grows exponentially in the problem scale in
general, although admittedly many MIPs can be solved with reasonable overhead in
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210 H. Liu et al.

practice and there has been successful applications of MIP to least quantile regression
problems by [2].

Such computational complexity is not surprising in theory, as FCPSLR is claimed
to be NP-hard by [32,37]. [18] provides a formal proof for the NP-hardness of sparse
linear regressionwith SCAD and some other penalty functions. In amore general case,
[3,14] show that theminimization of a sparse regression problemwith a “concave” and
“monotone” penalty function is strongly NP-hard. Liu et al. [19] eformulates FCPSLR
into an indefinite quadratic program. Since indefinite quadratic programs are in NP
according to [29], we know that FCPSLR is in fact NP-complete.

In view of the NP-hardness in global minimization, several studies seek to solve
the FCPSLR locally (see, e.g., [10,13,31,32]). Some existing studies, such as [10,11],
show the existence of local minimizers that have the oracle property. Other reported
theoretical findings, such as those by [13,31,32], study specific FCPSLR-based learn-
ing algorithms in the form of local optimization procedures. Simulation studies in
[13,31] imply local solutions1 of FCPSLR outperform the Lasso.

In this paper, we consider local solutions to FCPSLR that satisfy a second-order
necessary condition, called significant subspace second-order necessary condition
(S3ONC), which is weaker than the second-order KKT condition. We show that, at
those S3ONC solutions, the sound recovery quality is an intrinsic property, regard-
less of the choice of solution procedures. The S3ONC relaxes the condition of local
minimality in [10,11], and admits a fully polynomial-time approximation scheme
(FPTAS, whose complexity is polynomial in both dimension and solution accuracy,
but not necessarily polynomial in the bit length of accuracy). In contrast to [13,31,32],
our analysis is algorithm-independent.

Specifically, inspired by [8,9], we present conditions on the choice of parameters a
and λ to ensure the desired sparsity of local solutions based on a first-order necessary
condition (FONC) and the S3ONC. With either of these two conditions, we show that
any dimension of a local solution is necessarily zero once its magnitude is smaller
than an explicit threshold and that the total number of non-zero variables at a local
solution is bounded from above. Our results imply that, under our conditions, any local
solution is sparse.

Perhaps more interestingly, if the random error vector W is sub-Gaussian and A
satisfies the restricted eigenvalue (RE) condition [5], we show that any solution satis-
fying the S3ONC for FCPSLR may yield a bounded error in approximating the true
parameter with high probability and even exactly recover the oracle solution. Further-
more, the statistical performance of FCPSLR is related with the optimization quality
in minimizing the FCPSLR formulation. More precisely, the aforementioned error of
an S3ONC solution improves polynomially when the suboptimality gap decreases.

We apply the above findings to the S3ONC solutions that have smaller objective
values than a Lasso solution, namely, the S3ONC solutions in the sub-level set {x :
f (x) ≤ f (xlasso)}, in the case of FCPSLR with MCP. Under the RE condition, we
show that those local solutions have the strong oracle property, while, in contrast, the
Lasso does not have the oracle property. Furthermore, when the sample size is above

1 Throughout this paper, a “local solution” refers to a solution that at least satisfies the first-order KKT
condition, and may or may not satisfy a second-order necessary condition.
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Folded concave penalized sparse linear regression… 211

a certain threshold polynomial in ln p, those S3ONC solutions can achieve an ME
comparable to the optimal but exponential-time estimator of the form

xexp ∈ arg inf
x∈�p : ‖x‖0≤|S|

1

2n
‖Ax − b‖, (5)

which is shown by [26,36] to outperform the Lasso and possibly all the polynomial-
time estimators in terms of ME. In the meantime, the worst-case ME of those S3ONC
solutions is comparable to the Lasso.

Our results based on the S3ONC have some important differences from the analyses
by [21], which shows that all solutions satisfying the FONC share the same upper
bound on their distances from the true parameter under a restricted strong convexity
(RSC) condition. Since our finding differentiates local solutions by their sub-level
sets, our results may better explain the variation in performance among local solutions
achieved by the same solution technique with different initial points, as observed from
simulations by [13,31].

To ensure the statistical properties, we impose the RE condition on A. It is shown
by [28] that RE is a relaxation of the restricted isotropy property (RIP, introduced by
[6]) for some choices of parameters and is considered as one of the weakest condi-
tions on the design matrices to ensure statistical performance for the Lasso as per [25].
Also under RE condition, [13,31] show respectively that FCPSLR solved specifically
by local linear approximation (LLA) approach and by ConCave Convex procedure
(CCCP), if initialized with the Lasso solution, results in the (strong) oracle property.
We should note that, although both the RIP and the RE are established on fixed design
matrices, some literature focuses on the probability for a random design matrix to
satisfy the RIP or the RE condition. When design matrices are random, an isotrop-
icity condition is often necessary for the RIP. To ensure the RE condition in random
design matrices, the isotropicity condition can be dropped for Gaussian or subgaus-
sian random designs [24,38]. Some special cases without subgaussian assumptions
are presented by [25].

One remaining question is how to compute a solution satisfying S3ONC at a rea-
sonable overhead. Hereafter, an algorithm is said to be S3ONC-guaranteeing, if it
generates a solution that satisfies S3ONC at convergence or at termination. Any algo-
rithm that ensures the second-order KKT condition is S3ONC-guaranteeing, since
S3ONC is weaker than the second-order KKT condition. To our knowledge, scarcely
is there any discussion on S3ONC-guaranteeing computing procedures in the statistics
literature in solvingFCPSLR, despite the several studies on solving the problem locally
[10,13,21,32]. Instead, existing techniques yield local solutions that are only known
to satisfy the first-order KKT condition. Nonetheless, in the optimization literature,
algorithms ensuring a second-order KKT condition in non-convex optimization have
been much studied by, for instance, [4,7,23,33,34]. In particular, the interior point
algorithm by [4] is an FPTAS in achieving a second-order KKT solution with ε inac-
curacy. In this paper, we elect to employ a S3ONC-guaranteeing potential reduction
(PR) method as an adaptation of [33,34].

The rest of the paper is organized as follows. Section 2 formally states the S3ONC
and presents the conditions for any local solution to be a sparse estimator. Section
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3 presents our theoretical results on statistical properties at any solution satisfying
the S3ONC. Section 4 presents proofs and auxiliary lemmas for the results in Sect.
3. Section 5 briefly discusses the PR algorithm and summarizes some preliminary
numerical results. Details of both the algorithm and the test results are presented in
the online supplement [20]. Finally, Sect. 6 concludes this paper with final remarks.

Throughout this paper, wewill denote by ‖·‖p the �p-norm, except that ‖·‖0 denotes
the number of non-zero entries. For a finite set, | · | denotes the cardinality. Considering
an arbitrary vector x, we denote that xS := (xi : i ∈ S) and xSc := (xi : i ∈ Sc),
which are subvectors of x. For any index set Ŝ, we denote by Ŝc the complement of
Ŝ with respective to {1, . . . , p}. We will also use the abbreviation “a.s.” for “almost
surely”. When we present results indifferent between the SCAD and the MCP cases,
we will refer to both FCPSLR with SCAD and FCPSLR with MCP as FCPSLR
for convenience. Accordingly, we will use Pλ to denote both Pλ,SC AD and Pλ,MCP .
Otherwise, we may use FCPSLR-SCAD and FCPSLR-MCP to differentiate the two.

2 Necessary optimality conditions and their implications to sparsity

This section first presents in Sect. 2.1 the necessary optimality conditions, including
the FONC and the S3ONC. Then, as implications of those necessary conditions, in
Sects. 2.2.1 and 2.2.2, we provide some sparsity properties of both FCPSLR-SCAD
and -MCP, inspired by [8,9]: we show that each dimension of a local solution is nec-
essarily zero once its magnitude is smaller than an explicit threshold. Such a threshold
differentiates between solutions satisfying the FONC and those satisfying the S3ONC.
Utilizing that threshold, we derive the upper bounds on ‖x∗‖0 of a local solution x∗.
These bounds are useful to estimate the magnitude and the number of the non-zero
dimensions of a local solution using information that is computationally cheap to
acquire. Denote by a·i the i-th column of A for i = 1, . . . , p throughout this paper.

2.1 Necessary conditions

The results in this section rely heavily on the following necessary conditions for a
local minimal solution to (3).

First-order necessary condition (FONC): Solution x∗ satisfies:

∃D(x∗) ∈ 1

n
A�(Ax∗ − b) + (P ′

λ(x
∗
i )∂|x∗

i | : 1 ≤ i ≤ p) s.t. D(x∗) = 0, (6)

where ∂| · | denotes the subdifferential of | · |.
Significant subspace second-order necessary condition (S3ONC) : Solution x∗ sat-
isfies FONC. Furthermore, for all i ∈ {i : x∗

i �= 0},

∂2 f (x)
(∂xi )2

∣∣∣∣
x=x∗

≥ 0 (7)
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Folded concave penalized sparse linear regression… 213

if the second-order derivative exists.
The S3ONC is based on the fact that a localminimal solution in the entire spacemust

be a local minimizer in the subspace that considers only a single non-zero variable (See
also [8]). Apply this observation to each of the significant (i.e., non-zero) dimensions,
we obtain the second-order necessary condition in (7).

2.2 Sparsity at local solutions

In the subsequent, we present a set of bounds on the magnitude and the number of the
non-zero dimensions at any local solution satisfying either the FONC or the S3ONC.
Specifically, Theorem 1 presents some general sparsity results for solutions satisfying
the FONC. Corollaries 1 and 2 then apply Theorem 1 to the special cases of SCAD and
MCP, respectively. In Sect. 2.2.2, Theorem 2 is another general result on the sparsity
of solutions satisfying the S3ONC. Following that are Corollaries 3, 4, and 5 providing
more details than Theorem 2 in the special cases of SCAD and MCP.

2.2.1 First-order bounds for non-zero entries

This subsection studies the first set of the promised thresholds and bounds based on
the FONC. We start with a relatively general theorem that applies to both SCAD and
MCP.

Theorem 1 Let x∗ := (x∗
i : 1 ≤ i ≤ p) ∈ �p be a solution satisfying FONC to (3)

and let x0 ∈ �p be an arbitrary feasible solution. Assume f (x∗) ≤ f (x0). If x∗
i �= 0,

then ‖a·i‖
√
2 f (x0) ≥ √

nP ′
λ(|x∗

i |).
Proof We first notice that

‖a�·i (Ax∗ − b)‖2 ≤‖a�·i ‖2‖Ax∗ − b‖2 ≤ ‖a�·i ‖2
(

‖Ax∗ − b‖2 + 2n
p∑

i=1

Pλ(|x∗
i |)
)

= 2n‖a�·i ‖2 f (x∗) ≤ 2n‖a·i‖2 f (x0) (8)

Suppose that |x∗
i | > 0. The FONC at x∗ for the i-th dimension yields a�·i (Ax∗ −

b) + nP ′
λ(|x∗

i |) · sign(x∗
i ) = 0, which, combining with (8), gives us nP ′

λ(|x∗
i |) ≤

n|P ′
λ(|x∗

i |)| ≤ ‖a·i‖
√
2n f (x0). This completes the proof. ��

The above theorem has direct implications to the special cases of SCAD and MCP,
as detailed in the following corollaries.

Corollary 1 Consider the case of SCAD. Let x∗ be a solution satisfying FONC to (3)
and x0 ∈ �p a feasible solution. Assume f (x∗) ≤ f (x0).

(a) For any i : 1 ≤ i ≤ p, if x∗
i �= 0 and if

λ > ‖a·i‖
√
2 f (x0)/

√
n (9)
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214 H. Liu et al.

then |x∗
i | > λ and |x∗

i | ≥ aλ − a−1√
n

‖a·i‖
√
2 f (x0).

(b) Assume that (9) is satisfied for all i : 1 ≤ i ≤ p, then we have Pλ(aλ −
maxi : 1≤i≤p n− 1

2 (a − 1)‖a·i‖
√
2 f (x0)) > 0 and

‖x∗‖0 ≤ f (x0)

Pλ

(
aλ − maxi : 1≤i≤p

(a−1)‖a·i‖√
n

√
2 f (x0)

) .

Proof By Theorem 1, we have that, if x∗
i �= 0, then ‖a·i‖

√
2 f (x0) ≥ √

nλ[I(|x∗
i | ≤

λ) + (aλ − |x∗
i |)+(a − 1)−1λ−1

I(|x∗
i | > λ)] ≥ √

nλ[I(|x∗
i | ≤ λ) + (aλ − |x∗

i |)(a −
1)−1λ−1

I(|x∗
i | > λ)]. Combining with (9), the above inequality is satisfied if and only

if |x∗
i | > λ and |x∗

i | ≥ aλ − a−1√
n

‖a·i‖
√
2 f (x0) both hold, This completes the proofs

of Part (a).
As to Part (b), we notice that Pλ vanishes at zero and is positive and non-

decreasing on�++. Combining with Part (a), we have |x∗
i | ≥ aλ− a−1√

n
‖a·i‖

√
2 f (x0)

if x∗
i �= 0 and f (x0) ≥ f (x∗) ≥ ∑p

i=1 Pλ(|x∗
i |) = ∑

i : x∗
i �=0 Pλ(|x∗

i |) ≥∑
i : x∗

i �=0 Pλ

(
aλ − maxî : 1≤î≤p

(a−1)‖a·î‖√
n

√
2 f (x0)

)
= ‖x∗‖0Pλ(aλ − n−1/2(a −

1)maxî : 1≤î≤p ‖a·î‖
√
2 f (x0)).Multiplying both sides of (9) by (a−1), we have aλ−

λ > a−1√
n

‖a·i‖
√
2 f (x0) for all i : 1 ≤ i ≤ p. Therefore, aλ − a−1√

n
‖a·i‖

√
2 f (x0) >

λ > 0 for all i : 1 ≤ i ≤ p. We obtain Part (b). ��
Corollary 2 Consider the case of MCP. Let x∗ be a solution satisfying FONC to (3)
and by x0 ∈ �p a feasible solution. Assume f (x∗) ≤ f (x0).

(a) For any i : 1 ≤ i ≤ p, if x∗
i �= 0, then |x∗

i | ≥ aλ − a‖a·i‖√
n

√
2 f (x0).

(b) Assume that λ >
‖a·i‖√

n

√
2 f (x0) for all i : 1 ≤ i ≤ p, then Pλ(aλ −

n−1/2 maxi : 1≤i≤p a‖a·i‖
√
2 f (x0)) > 0 and

‖x∗‖0 ≤ f (x0)

Pλ

(
aλ − maxi : 1≤i≤p

a‖a·i‖√
n

√
2 f (x0)

) .

Proof Using Theorem 1 and definition of the MCP, this corollary can be shown by
similar arguments to those in the proof of Corollary 1. ��

2.2.2 Second-order bounds for non-zero entries

This subsection studies a different set of thresholds and bounds for the non-zero entries
of S3ONC solutions. These bounds are in general sharper than the results from the
FONC. We will, again, start with a general theorem.

Theorem 2 Let x∗ be a solution satisfying S3ONC to (3) and h( · ) be the second-order
derivative of Pλ(| · |) when it is twice differentiable. For any i : 1 ≤ i ≤ p, if Pλ(| · |)
is twice differentiable and concave at x∗

i , then ‖a·i‖2 ≥ n|h(x∗
i )|.
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Folded concave penalized sparse linear regression… 215

Proof Per S3ONC, if Pλ(|·|) is twice differentiable at the i-th dimension of x∗ denoted
x∗
i , then a�·i a·i + nh(x∗

i ) ≥ 0. Notice that h(x∗
i ) ≤ 0 per concavity of Pλ(| · |) at x∗

i .
Therefore, ‖a·i‖ = a�·i a·i ≥ −nh(x∗

i ) = n|h(x∗
i )| ��

Corollaries 3 and 4 below are direct applications of Theorem 2 for SCAD andMCP

Corollary 3 Consider the case of SCAD. Let x∗ be a S3ONC solution to (3).

(a) If ‖a·i‖2 < n
a−1 , then either |x∗

i | ≥ aλ or |x∗
i | ≤ λ is satisfied.

(b) For feasible solution any x0 satisfying f (x∗) ≤ f (x0), if ‖a·i‖2 < n
a−1 , and

λ >
‖a·i‖

√
2 f (x0)√
n

, then either x∗
i = 0 or |x∗

i | ≥ aλ is satisfied.

Proof Invoking Theorem 2, if λ < |x∗
i | < aλ, then n|h(x∗

i )| = n 1
a−1 ≤ ‖a·i‖2.

Therefore, if n|h(x∗
i )| = n 1

a−1 > ‖a·i‖2, then |x∗
i | ≤ λ, or |x∗

i | ≥ aλ, which is
immediately Part (a) of this corollary.

Further invoking Corollary 1, and noticing that a solution satisfying S3ONC is also
a solution satisfying FONC, we have the desired results in Part (b). ��
Corollary 4 Consider the case of MCP. Let x∗ be a S3ONC solution to (3). If ‖a·i‖2 <
n
a , then either |x∗

i | > aλ or x∗
i = 0 is satisfied.

Proof This corollary follows by using Theorem 2, definition of the MCP and tech-
niques used in the proof of the last corollary. ��
Corollary 5 Let x∗ be a solution satisfying S3ONC to (3) and x0 ∈ �p an arbitrary
feasible solution. Assume f (x∗) ≤ f (x0).

(a) Consider the case of SCAD. If λ >
‖a·i‖

√
2 f (x0)√
n

for all i : 1 ≤ i ≤ p and

f (x∗) ≤ f (x0), then ‖x∗‖0 ≤ f (x0)/Pλ(aλ).
(b) Consider the case of MCP. Then ‖x∗‖0 ≤ f (x0)/Pλ(aλ).

Proof To show (a): Per Part (b) of Corollary 3, if x∗
i �= 0, then |x∗

i | ≥ aλ for all
i : 1 ≤ i ≤ p. Combining with the fact that Pλ( · ) is non-decreasing, Pλ(0) = 0, we
have f (x0) ≥ f (x∗) ≥ ∑p

i=1 Pλ(|x∗
i |) = ∑

i : x∗
i �=0 Pλ(|x∗

i |) ≥ ∑
i : x∗

i �=0 Pλ (aλ) =
‖x∗‖0Pλ (aλ) , which, combining with the fact that Pλ(aλ) > 0, immediately implies
the desired result in (a).

Part (b) is evident by following the same argument as in (a). Yet we will invoke
Corollary 4 instead of Corollary 3. ��
Remark 1 Both the first-order and the second-order bounds are dependent on an arbi-
trary feasible solution x0. We may let x0 = x∗ in all the results above to obtain the
bounds for a local solution. Perhaps more interestingly, x0 can also be some solutions
that are more easily available, such as the all-zero vector or a solution generated by any
warm-starting procedure. If x∗ is computed with a descent algorithm that starts at x0,
we can ensure the satisfaction of the stipulated inequality f (x∗) ≤ f (x0). Then, one
can use the aforementioned bounds to estimate the sparsity of x∗ using information
only on x0. Such information is often computationally cheap.
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Remark 2 The sparsity results in this section only serve as an estimate on the magni-
tude and the number of (non-)zero variables of a local solution. They do not provide any
guarantee in approximating |S|, the cardinality of the true support set. Nonetheless,
in the following section, with some additional assumptions, our discussion covers the
correctness in screening for the non-zero dimensionswith the aid of the above analysis.

3 Statistical accuracy of local solutions to FCPSLR

This section studies the statistical accuracy at a local solution satisfying the S3ONC.
Detailed settings and assumptions are discussed in Sect. 3.1. Then Sect. 3.2 presents
the promised results.

We will denote by a j i the entry at the i-th column and j-th row of A. For a scalar
x ≥ 0, denote by �x� (and �x�) the smallest (largest, rep.) integer greater (smaller)
or equal to x . By definition of SCAD and MCP, the following fact will be used in our
analysis: for all x ∈ �,

Pλ,SC AD(|x |) ≤ (a + 1)λ2/2; Pλ,MCP (|x |) ≤ aλ2/2. (10)

3.1 Setting and assumption

We will restrict our discussions to linear regression with fixed design matrices and
random error terms. Our results rely on the following assumptions:

Assumption A

A.1. The vector of errors W = (ε j ) ∈ �n satisfies that Prob[|〈W, υ〉| ≥ t] ≤
2 exp

(−t2/2σ 2
)
for any υ ∈ �n : ‖υ‖ = 1 and any t > 0.

A.2. ThedesignmatrixA satisfies a columnnormalization condition, i.e.,n−1‖a·i‖2 ≤
K for some K > 0 for all i = 1, . . . , p.

A.3. There exists a sequence {rd ≥ 0 : d = 1, . . . , p} such that the following are
satisfied: (i) For any d1, d2 : 1 ≤ d1 ≤ d2 ≤ p, we have rd1 ≥ rd2 ; (ii) There
exists some p̃∗ : 2|S| ≤ p̃∗ ≤ p such that r p̃∗ > 0; (iii) For all d : 1 ≤ d ≤ p,
it holds that n−1‖Aδx‖2 ≥ rd‖δx‖2 for any δx ∈ �p : ‖δx‖0 ≤ d.

Assumptions A.1 and A.2 are commonly used conditions in the literature (see,
e.g., [22,31]). Assumption A.1 holds if W follows an isotropic Gaussian distribution
as in [5,36]. Assumption A.2 can be ensured via normalization. It is satisfied with
high probability by random design matrices under sub-exponential or even weaker
assumptions according to [30].

Assumption A.3 is the most critical one. Intuitively, for any d : 1 ≤ d ≤ p, the
scalar rd is the lower bound on the smallest eigenvalue of all the principle sub-matrices
ofA�Awith a size d×d. Thus, by r p̃∗ > 0, it essentiallymeans that any principal sub-
matrix of A�A with a size smaller or equal to p̃∗ × p̃∗ is positive definite. Regarding
this assumption, we think it worthwhile to mention the following observation: When
p̃∗ = 4|S|, Assumption A.3 is weaker than a critical condition for the Lasso to ensure
recovery quality—the restricted eigenvalue (RE) condition, which is first introduced
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by [5] (see its definition taken from [36] in Definition 1 below). We illustrate this
relationship between the RE condition and Assumption A.3 in Lemma 1. Under the
RE condition, [5] shows the recovery quality of the Lasso. [38] provides conditions
and probability lower bounds for RE condition to hold. Although the RE condition
with a more general setting of parameters is discussed by [5,28], the performance of
the Lasso is unknown under the more general setting.

Additionally, since the RE condition is also equivalent to the restricted strong con-
vexity (RSC) condition in a linear regression model with some choices of parameters
according to [22], therefore Assumption A.3 is also potentially weaker than the RSC
condition discussed in [22].

Definition 1 (RE condition [36]). The matrix A ∈ �n×p is said to satisfy the RE
condition if, for some 
(A) > 0, it holds that 1

n ‖Aδx‖2 ≥ 
(A)‖δx‖2 for all δx ∈
∪|Ŝ|=|S|C(Ŝ) where C(Ŝ) := {δx := (δxi ) ∈ �p : |δxŜc | ≤ 3|δxŜ|}, δxŜc := (δxi :
i ∈ Ŝc), and δxŜ := (δxi : i ∈ Ŝ). Furthermore, the largest possible 
(A) is said to
be the restricted eigenvalue constant of A.

Lemma 1 (a) The RE condition in Definition 1 implies Assumption A.3 with r4|S| ≥

(A) > 0 and p̃∗ ≥ 4|S|. (b) The reverse is not true.
Proof For Part (a), it suffices to show that for any δx = (δxi ) ∈ �p : ‖δx‖0 ≤ 4|S|,
there always exists an index set Ŝ′ : |Ŝ′| = |S|, such that |δxŜ′c | ≤ 3|δxŜ′ |. Here
δxŜ′c := (δxi : i ∈ Ŝ′c), and δxŜ′ := (δxi : i ∈ Ŝ′).

If ‖δx‖0 ≤ |S|, the above is trivially true.Otherwise, if ‖δx‖0 > |S|, one can always
pick Ŝ′ to be the set of indices of the first |S| number of coordinates with the largest
absolute value. As a result, mini∈Ŝ′ |δxi | ≥ maxi∈Ŝ′c |δxi | and |Ŝ′| = |S|. We then

know that |δxŜ′ | ≥ |S| · mini∈Ŝ′ |δxi | ≥ |S| · maxi∈Ŝ′c |δxi | = 3|S|
3 maxi∈Ŝ′c |δxi | ≥

‖δx‖0−|Ŝ′|
3 maxi∈Ŝ′c |δxi | ≥ 1

3

∑
i∈Ŝ′c∩{i : |δxi |�=0} |δxi | = 1

3 |δxŜ′c |, which leads to the
desired result in Part (a).

For Part (b), it suffices to show that, for some δx ∈ �p, there exists an index set
Ŝ′ : |Ŝ′| = |S| such that |δxŜ′c | ≤ 3|δxŜ′ |, but δx does not satisfy ‖δx‖0 ≤ 4|S|. An
example can be δxi = 1/|S| for all i ∈ S and δxi = 1/(p − |S|) for all i /∈ S. If we
pick Ŝ′ = S, the above is evident. ��

[24,38] show that the RE condition can be satisfied with high probability when
the design matrix is generated following Gaussian and/or subgaussian distributions.
Potentially more general settings for the RE condition can be obtained from the dis-
cussions by [1,25] and [30]. Since Assumption A.3 can be more general than the RE
condition, the former may be easier (in the sense of occurring with a better probability
or of requiring weaker assumptions on the underlying distribution) to hold when the
design matrix is random.

We will impose some conditions on the parameters of the FCP:

Condition B (B1) For SCAD, ‖a·i‖2 < n
a−1 for all 1 ≤ i ≤ p and f (x0) <

mini :1≤i≤p
λ2n

2‖a·i‖2 for a given initial solution x0.

(B2) For MCP, ‖a·i‖2 < n
a for all 1 ≤ i ≤ p and λ > 0.
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The above condition ensures that the assumptions of Corollaries 3 and 4 hold for
both SCAD andMCP. The stipulation on λ for the SCAD case is conceivably stronger
than for theMCP case. For the former, a wise initial solution x0 that has a good solution
quality may allow for more flexible choices of λ, while, for the latter, Condition B
is non-restrictive on λ. Under Assumption A.2, the requirements of Condition B on
parameter a is satisfied for any a : a < 1 + K−1 in the SCAD case and for any
a : a < K−1 in the MCP case.

3.2 Major results

We now present our theoretical findings on the statistical performance of S3ONC
solutions. All proofs are postponed in Sect. 4, our main results can be summarized as
following:

Section 3.2.1 presents two “general” theorems. Theorem 3 establishes statistical
performance bounds in terms of ME, AD, and �2 loss, for all S3ONC solutions. These
bounds imply the dependence of statistical performance on the optimization qual-
ity. Theorem 4 shows that the oracle solution (2) may be recovered by any S3ONC
solution under proper choices of parameters (a, λ), when the minimal signal strength
mini∈S |xtruei | is properly large.

Sections 3.2.2 and 3.2.3 apply Theorems 3 and 4 to the case of FCPSLR-MCP
and show that any S3ONC solution which has a better objective value than the Lasso
solution entails the strong oracle property (Corollary 6). Furthermore, Corollary 7
in Sect. 3.2.2 shows that those local solutions may incur a substantially better ME
than the Lasso (4), if the sample size is above a certain threshold polynomial in ln p.
Otherwise, the worst-case ME of FCPSLR-MCP is comparable to the Lasso.

We remark that, since we only wish to provide theoretical insights here, we antici-
pate that the constants used in our results may not be optimal.

3.2.1 Statistical accuracy of an arbitrary S3ONC solution

This subsection seeks to present a “general” result on the statistical performance at
an arbitrary S3ONC solution x∗ within the sub-level set {x : f (x) ≤ infx f (x) + Γ }
for an arbitrary Γ ≥ 0. To this end, we consider a slightly larger sub-level set, {x :
f (x) ≤ f (xtrue) + Γ }. Because f (xtrue) ≥ infx f (x), it holds that {x : f (x) ≤
infx f (x) + Γ } ⊆ {x : f (x) ≤ f (xtrue) + Γ }.

To aid our presentation of the results, we recall the closed-form of Pλ(aλ) given as
in (10). We will also make use of some short-hand notations:

P∗(t, p̃) := 1 − exp{− p̃(t − ln p)} − exp{−( p̃ + 1)(t − ln p)}
×{1 − exp (−(p − p̃) (t − ln p))}/{1 − exp (−t + ln p)}. (11)
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When r p̃∗ > 0, where p̃∗ is defined in Assumption A.3,

Ta,λ,n,xtrue,A(t) := {8σ 2 p̃∗/n}
(
1 + 2

√
t + 2t

)
+ 8min

{
{λ2(|S| − ‖x∗

S‖0)}/r p̃∗ , Pλ(aλ)|S| + Γ
}

. (12)

Theorem 3 Denote p̃Γ,a,λ:=
⌊
{2|S| · Pλ(aλ) + Γ }/{Pλ(aλ) − σ 2

2n (1+2
√
t+2t)}

⌋
.

Consider an arbitrary S3ONC solution x∗ to FCPSLR (3) with either SCAD or MCP.
Assume the simultaneous occurrence of (i) the event that Condition B is satisfied with
any initial solution x0; and (ii) the event that f (x∗) ≤ min{ f (x0), f (xtrue) + Γ }
holds for any Γ ≥ 0. For any t > 0, assume that parameters (a, λ) of penalty Pλ

satisfy Pλ(aλ) > σ 2(1+ 2
√
t + 2t)/(2n). Then under Assumption A.1, the following

holds:

1. For any integer p̃∗
Γ,a,λ : min{ p̃Γ,a,λ, p} ≤ p̃∗

Γ,a,λ ≤ p, the ME is bounded by

1

n
‖A(x∗ − xtrue)‖2 ≤ 4σ 2

n
· p̃∗

Γ,a,λ ·
(
1 + 2

√
t + 2t

)
+ 8min

{
λ|S| · ‖xtrue‖∞, Pλ(aλ)|S| + Γ

}
. (13)

with probability at least P∗(t, p̃∗
Γ,a,λ) (as in (11)).

2. If, in addition, Assumption A.3 holds and (a, λ) satisfy that

p̃Γ,a,λ ≤ p̃∗, (14)

where p̃∗ is defined in Assumption A.3. Then with probability greater or equal to
P∗(t, p̃∗) (as in (11)), the following holds simultaneously:

‖A(x∗ − xtrue)‖2
n

≤ Ta,λ,n,xtrue,A(t); ‖x∗ − xtrue‖2 ≤ Ta,λ,n,xtrue,A(t)

r p̃∗
,

|x∗ − xtrue| ≤
√

p̃∗
r p̃∗

· Ta,λ,n,xtrue,A(t); ‖x∗ − xtrue‖0 ≤ p̃∗, (15)

and

|S| − ‖x∗
S‖0 ≤

∑
i∈S

I

(
|xtruei | −

[
8σ 2 p̃∗

nr p̃∗

(
1 + 2

√
t + 2t

)

+ 8

r p̃∗
· min

{
λ2|S|
r p̃∗

, Pλ(aλ)|S| + Γ

}]1/2
≤ 0

)
. (16)

where Ta,λ,n,xtrue,A(t) is defined as in (12).
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Inequalities in (15) provide upper bounds to the statistical errors under differ-
ent measures. In addition to the error bounds above, we show in the following that
the S3ONC solutions can exactly recover the oracle solution under some additional
assumptions on the minimal signal strength, mini∈S |xtruei |.
Theorem 4 Suppose Assumptions A.1 and A.3 with p̃∗ ≥ 2|S| hold. Consider an
arbitrary S3ONC solution x∗ ∈ �p to FCPSLR (3) with arbitrarily either SCAD
or MCP. Assume the simultaneous occurrence of (i) the event that Condition B
is satisfied with an arbitrary initial solution x0; and (ii) the event that f (x∗) ≤
min{ f (x0), f (xtrue) + Γ } holds for an arbitrary Γ ≥ 0. Let the parameters (a, λ)

satisfy that λ > σa−1
√

8 p̃∗
nr p̃∗

(
1 + 2

√
t + 2t

)
and

Pλ(aλ) >
σ 2

2n
(1 + 2

√
t + 2t) +

σ 2

n |S| · (1 + 2
√
t + 2t) + Γ

p̃∗ − 2|S| + 1
; (17)

and let minimal signal strength satisfy that

min
i∈S

|xtruei | >

√
8σ 2 p̃∗
nr p̃∗

(
1 + 2

√
t + 2t

)
+ 8

r p̃∗
min

{
λ2|S|
r p̃∗

, Pλ(aλ)|S| + Γ

}
,

(18)

then x∗ equals the oracle solution, i.e., x∗ = xoracle ∈ arg infx∈�p : xi=0, ∀i∈Sc
1
2n ‖

Ax − b‖2, with probability at least P∗(t, p̃∗) (as in (11)).

Remark 3 Theorem 3 provides a set of upper bounds on the performance measures for
any S3ONC solution. Theorem 4 presents a set of conditions for any S3ONC solution
to recover the oracle solution. These results are algorithm independent. In contrast,
the existing results in [13,31,32] relay on specific choices of computing procedures.

Remark 4 If ln p ≥ 1 and t = 2 ln p, one may quickly verify that P∗(2 ln p, p̃∗) ≥
1 − O(1) · exp(−O(1) · p̃∗ ln p), where we denote by O(1) problem-independent
constants. Recall that n << p. Theorem 3 implies that the bounds on statistical errors
in (13) and (15) hold with high probability. Similarly, the recovery of oracle solution
as in Theorem 4 holds with high probability.

Remark 5 For fixed (a, λ), Theorems 3 and 4 explicate the relationship between
optimization quality in minimizing the non-convex formulation of FCPSLR and the
statistical quality in approximating the true parameter. Specifically, the former theorem
shows that the statistical performance of the S3ONC solutions in terms of ME, �2 loss,
and AD can all be written in parameterization of Γ , which is always an underestimate
of the suboptimality gap. For a simple example, consider FCPSLR-MCP, if we (i)

choose the parameters (a, λ) to be λ = O(σ

√
ln p
n ) and a = O(1), (ii) let t = 2 ln p

(and assume ln p ≥ 1), and (iii) let x0 = x∗, we obtain an upper bound on ME from
(13) given as
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O

(
σ 2|S| ln p

n
+ Γ

)
(19)

with probability lower bounded by 1−O(1)·exp (−O(1)|S| ln p) .We think it interest-
ing to compare the ME in (19) with that of an optimal, but exponential-time estimator.
[26] shows that, under a comparatively more critical assumption that W is isotropic
Gaussian, the exponential-time sparse estimator (5), which is claimed to be the optimal
estimator by [36], yields an ME of

Prob

[
1

n
‖A(xexp − xtrue)‖2 ≤ O

(
ln(p/|S|)

n
σ 2|S|

)]
≥ 1 − O(1) · exp (−O(1) · |S| ln(p/|S|)) . (20)

We see a comparable performance between (19) with (20) when Γ = 0, that is,
when the FCPSLR-MCP is minimized globally. Meanwhile, the ME of FCPSLR-
MCP deteriorates linearly with an increased Γ . Similarly, for the recovery of the
oracle solution, Theorem 4 indicates that the requirement (18) on the minimal signal
strength is increasingly demanding if Γ becomes larger. To our knowledge, this is the
first explication on the relationship between statistical performance and optimization
quality in a non-convex learning problem. Furthermore, in spite of the tendency that the
statistical performance degrades with the increase of suboptimality gap, S3ONC solu-
tions may still recover the oracle solution when the minimal signal strength, namely,
mini∈S |xtruei |, is large enough to satisfy (18).

3.2.2 Strong oracle property

This subsection focuses on FCPSLR-MCP and show that any of its S3ONC solutions
within the sub-level set {x : f (x) ≤ f (xlasso)} entails the strong oracle property.
This means that any descent, S3ONC guaranteeing algorithm that starts from the
solution to the convex formulation of the Lasso in (4) can output the oracle solution
with overwhelming probability. Initializing computing schemes for FCPSLR with
the Lasso has been discussed by [13] and [31]. Nonetheless, these analyses are all
algorithm-specific. We present in the following an algorithm-independent analysis.

Corollary 6 Assume ln p ≥ 1. Denote by x∗ in �p an S3ONC solution to FCPSLR-
MCP. Let Assumptions A.1, A.2 with K = 1, and the RE condition (as defined in
Definition 1) with 
(A) < 1 be satisfied. Then r4|S| ≥ 
(A) > 0. Assume that
f (x∗) ≤ f (xlasso) almost surely, where xlasso is defined in (4) with problem data

(xtrue,A,b) and parameter λlasso = 4σ
√

ln p
n1−γ , where γ ∈ [0, 1] is an arbitrary

scalar. Let λ = 35

(A)

σ

√
ln p
n1−γ , and a ∈ [0.8, 1). There exists a problem-independent

constant c3 such that if

min
i∈S

|xtrue|2 ≥ c3 · σ 2|S| ln p

n1−γ · min{r4|S|, r24|S|[
(A)]2} (21)
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then the S3ONC solution x∗ equals the oracle solution, i.e.,

x∗ = xoracle ∈ arg inf
x∈�p : xi=0, ∀i∈Sc

1

2n
‖Ax − b‖2, (22)

with probability at least 1 − c1 exp(−c2nγ ln p) − c4 exp(−c5|S|nγ ln p) for some
problem independent constants c1, c2, c4, c5 > 0.

Remark 6 Even though we only consider the undesirable case where the principle
sub-matrices of A�A is ill-conditioned in the sense that 
(A) < 1, which is the same
setting as in [36], our results can be easily extended to the case of 
(A) ≥ 1 by
choosing a different value for λ.

Remark 7 It is worth mentioning that the choice of (λ, a) can be much more flexible
than the above corollary presents. In fact, one may follow the same proof for this

Corollary to verify that for a reasonably wide range of λ = O( 1

(A)

σ

√
ln p
n1−γ ) and

a = O(1), the above result remains to be true. In practice, one may choose λ via
data-driven procedures such as the cross validation.

Remark 8 When γ ∈ (0, 1], Corollary 6 indicates the overwhelming probability of
recovering the oracle solution. Thus Corollary 6 implies that any S3ONC solution that
has a better objective value than the Lasso (with proper choice of parameter λlasso)
entails the strong oracle property. In contrast, the Lasso in (4) does not have the oracle
property according to [10] regardless of the choice of λlasso > 0. Therefore, the strong
oracle property of an S3ONC solution already indicates a possible outperformance of
FCPSLR over the Lasso.

Remark 9 Corollary 6 is actually a direct implication of Theorem 4 to the case of
FCPSLR-MCP. It is possible to also obtain some oracle property results for FCPSLR-
SCAD with the Lasso initialization by applying Theorem 4. Nonetheless, due to the
additional stipulations forλ to satisfyConditionB in the SCADcase, the determination
of the penalty parameter λ is more involving. We will leave the simplification of
Condition B for SCAD to future research. Nonetheless, in practice, a proper choice of
λ for SCAD can also be determined via cross validation.

3.2.3 Comparison with Lasso in terms of ME

Apart from the comparison in terms of the oracle property between FCPSLR and the
Lasso in Sect. 3.2.2, the result in this subsection may provide a second reason why
local solutions to FCPSLR can potentially outperform the Lasso. [36] provides a set
of intriguing comparisons between an optimal but exponential-time estimator and all
the polynomial-time computable estimators, including the Lasso. Those comparisons
indicate a non-trivial gap in ME between these two types of estimators. Motivated by
that result, we are particularly interested in how FCPSLR-MCP compares with both
the optimal estimator and the Lasso under the same criterion of performance, namely,
ME. Again, we focus on the undesirable case where 
(A) < 1, as in [36].
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Corollary 7 Let ln p ≥ 1 and 
(A) < 1. Denote by x∗ an S3ONC solution to
FCPSLR-MCP. Suppose that (i) Assumptions A.1, A.2 with K = 1 hold; and (ii)
the RE condition (in Definition 1) is satisfied, then r4|S| ≥ 
(A) > 0. Assume in
addition f (x∗) ≤ f (xlasso) a.s., where xlasso is defined in (4) with the problem data

(xtrue,A,b) and parameter λlasso = 4σ
√

ln p
n .

1. If we let λ = 4σ
√

ln p
n and a ∈ [0.8, 1), then there exists a problem-independent

constant c6 > 0 such that:

1

n
‖A(x∗ − xtrue)‖2 ≤ c6σ 2|S|


(A)

ln p

n
(23)

with probability at least 1 − c1 exp(−c2 ln p) − c4 exp(−c5|S| ln p) for some
problem independent constants c1, c2, c4, c5 ∈ �++;

2. If we let λ = 35

(A)

σ

√
ln p
n and a ∈ [0.8, 1), then there exists a problem-

independent constant c7 : 0 < c7 < ∞ such that for any n > 1 that satisfies

n ≥ c7 · σ 2|S| ln p

ψ(xtrue) · min
{
r4|S|, r24|S| · [
(A)]2

} , (24)

where ψ : �p → �+ is defined as

ψ(xtrue) := max
Ssub⊆S: |Ssub|≤max

{
1,
⌈|S|−r4|S|·(
(A))2|S|⌉} min

i∈Ssub

|xtruei |2,

the ME is bounded by

1

n
‖A(x∗ − xtrue)‖2 ≤ c6σ 2

n
|S| ln p (25)

with probability at least 1 − c1 exp(−c2 ln p) − c4 exp(−c5|S| ln p).

Remark 10 We would like to compare the S3ONC solutions to FCPSLR-MCP with
both the optimal but exponential-time estimator in (5) and the Lasso, a polynomial-
time estimator as in (4). From [5] the Lasso achieves an ME of

Prob

[
1

n
‖A(xlasso − xtrue)‖2 ≤ O

(
ln p

n

σ 2|S|

(A)

)]
≥ 1 − O(1) · exp (−O(1) · ln(p)) . (26)

Comparing the ME of xexp in (20) and that of xlasso in (26), one may anticipate a
significant gap in the performance when 
(A) ∈ (0, 1) is small. It is also shown by
[36] that, for any polynomial-time sparse estimator, the gap incurred by small 
(A)

cannot be reducedwithout compromising the rate in n. In contrast, the results presented
in Corollary 7 indicates that the performance of FCPSLR-MCP may resemble either
xexp or xlasso in two different modes:
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Mode 1. The Lasso-comparable mode: From the first part of Corollary 7, we see that
the ME of FCPSLR-MCP as presented in (23) is comparable to the Lasso
as in (26) in the worst-case, when the sample size is small.

Mode 2. The optimal estimator-comparable mode: When the sample size is greater
than a threshold (24), which is linear in ln p and polynomial in some other
problem dependent numbers, properly tuning parameter λ allows FCPSLR-
MCP to enter a substantially enhanced mode that incurs an ME presented
as in (25). The resulting ME is comparable to the optimal estimator, as
in (20), in terms of dependency. Upon entering this mode, the ME of the
S3ONC solution is no longer dependent on 
(A) and may dominate the
Lasso especially when 
(A) is small.

In fact, one may choose a fairly flexible range of λ = O(σ

√
ln p
n ) and a = O(1) to

achieve the same rate as in (23), and of λ = O( σ

(A)

√
ln p
n ) and a = O(1) to achieve

the rate in (25). Practitioners can tune λ through in-sample cross validation, which is
indeed the commonly adopted practice. Therefore, it may be unnecessary to keep in
mind the aforementioned rules in determining λ, but use whichever value that works
best according to the in-sample trials.

Remark 11 The function ψ(xtrue) measures the signal strength of the majority of the
non-zero signals, or more precisely, the largest “max{1, �|S| − r4|S| · (
(A))2|S|�}”-
many non-zero dimensions (in terms of their absolute values), in the true parameter.
One may observe that the inequality ψ(xtrue) ≥ mini∈S |xtruei | always holds. This
indicates that FCPSLR-MCP may enter the optimal estimator-comparable mode even
if mini∈S |xtruei | is very close to zero, given that the majority of the nonzero signals
are strong enough.

Remark 12 Corollary 7 is in fact a direct implication of Theorem 3 to the case of
FCPSLR-MCP. One may also apply Theorem 3 to obtain a bound forME of FCPSLR-
SCAD. However, admittedly, Condition B for FCPSLR-SCAD ismore restrictive than
that for the MCP case, resulting in a possibly less desirable theoretical performance
estimate. Nonetheless, we later will show in Sect. 5 that the empirical performance
of FCPSLR-SCAD and that of FCPSLR-MCP appear to be quite alike. We therefore
think that our results may have underestimated the power of SCAD. Yet we will leave
improving the analysis for FCPSLR-SCAD to future research.

4 Technical proofs

We prove our major results in Sect. 4.1, while some auxiliary results are presented in
Sect. 4.2.

4.1 Proof of major results

4.1.1 Proof of Theorem 3. Firstly, under the simultaneous occurrence of both (a) the
event that Condition B holds with initial solution x0 and (b) the event that f (x∗) ≤
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min{ f (x0), f (xtrue)+Γ } is satisfied, for any t > 0, invoke Lemma 5 with any (a, λ)

and p̃ : p ≥ p̃ ≥ 2|S| such that Pλ(aλ) > σ 2

2n (1+ 2
√
t + 2t) + σ2

n |S|·(1+2
√
t+2t)+Γ

p̃−2|S|+1 ,

we have that ‖x∗ − xtrue‖0 ≤ p̃ holds with probability at least 1− exp(−( p̃ + 1)(t −
ln p)) · 1−exp(−(p− p̃)(t−ln p))

1−exp(−t+ln p) . One obtains via some algebra that the above inequality
is satisfied if p̃ : p ≥ p̃ ≥ min{p, p̃Γ,a,λ} ≥ 2|S| for arbitrarily fixed (a, λ) :
Pλ(aλ) > σ 2

2n (1+2
√
t+2t). Thismeans that for any integer p̃∗

Γ,a,λ : min{ p̃Γ,a,λ, p} ≤
p̃∗
Γ,a,λ ≤ p. with probability lower bounded by 1 − exp

(
−( p̃∗

Γ,a,λ + 1) (t − ln p)
)

·
1−exp

(
−(p− p̃∗

Γ,a,λ)(t−ln p)
)

1−exp(−t+ln p) .

We next provide a probabilistic bound on the ME for any S3ONC solution x∗
satisfying ‖x∗ − xtrue‖0 ≤ p̃∗

Γ,a,λ. To do so, we invoke Lemma 2 for an arbitrary
t > 0, where we let p̃ = p̃∗

Γ,a,λ within that lemma. Conditioning on the event that

‖x∗−xtrue‖0 ≤ p̃∗
Γ,a,λ, we have

1
n ‖A(x∗−xtrue)‖2 ≤ 4σ 2

n · p̃∗
Γ,a,λ ·(1 + 2

√
t + 2t

)+
8min{∑i∈S P ′

λ(|x∗
i |)|xtruei |, Pλ(aλ) · (|S| − ‖x∗‖0) + Γ } with probability at least

1 − exp
(
− p̃∗

Γ,a,λ (t − ln p)
)
. (Notice that here we also let t only within Lemma 2

to be rescaled into p̃∗
Γ,a,λt .) By the union bound and by the facts that (a) ‖x∗‖0 ≥ 0

surely; and that (b)
∑

i∈S P ′
λ(|x∗

i |)|xtruei | ≤ λ|S|‖xtrue‖∞ surely, This completes the
proof of Theorem 3 Part 1.

To show part 2, under the additional assumption of (14), we may follow almost the
same argument as in the first part and obtain

‖x∗ − xtrue‖0 ≤ p̃∗ (27)

with probability lower bounded by 1 − exp (−( p̃∗ + 1) (t − ln p)) ·
1−exp(−(p− p̃∗)(t−ln p))

1−exp(−t+ln p) , which is the claimed result in the fourth inequality of (15).
We also recall the notation of Ta,λ,n,xtrue,A(t) as in (12). If we invoke the second part
of Lemma 2 by letting p̃ := p̃∗ (and rescale t only within Lemma 2 into p̃∗t), together
with the fact that ‖x∗‖0 ≥ 0 surely, we obtain by the union bound that

1

n
‖A(x∗ − xtrue)‖2 ≤ 8σ 2 p̃∗

n

(
1 + 2

√
t + 2t

)

+ 8min

{
λ2(|S| − ‖x∗

S‖0)
r p̃∗

, Pλ(aλ)|S| + Γ

}
= Ta,λ,n,xtrue,A(t) (28)

holds with probability greater or equal to P∗(t, p̃∗) as defined in (11), which is imme-
diately the first inequality in the claimed results (15). Then by Lemma 3 (where we
let p̃ = p̃∗), combined with (28) and (27), we have the rest of the inequalities in (15)
and (16) hold as desired in Theorem 3.

4.1.2. Proof of Theorem 4. By assumption, (17) holds, which implies both Pλ(aλ) −
σ 2

2n (1 + 2
√
t + 2t) > 0 and p̃Γ,a,λ =

⌊
2|S|·Pλ(aλ)+Γ

Pλ(aλ)− σ2
2n (1+2

√
t+2t)

⌋
≤ p̃∗. Consider the
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following two events: {‖x∗ − xtrue‖0 ≤ p̃∗} and Ea( p̃∗) := {n−1‖A(x∗ − xtrue)‖2 ≤
8σ 2 p̃∗n−1(1+2

√
t+2t)+8min{λ2r−1

p̃∗ ·(|S|−‖x∗
S‖0), Pλ(aλ)|S|+Γ }}.ByLemma

4 with p̃ = p̃∗, we have that under the assumptions of Theorem 4, the simultaneous
occurrence of the above two events leads to the desired result. The probability for
their simultaneous occurrence is lower bounded by P∗(t, p̃∗) due to the second part
of Theorem 3, which completes the proof.

4.1.3 Proof of Corollary 6. By invoking Lemma 6 under the assumption that f (x∗) ≤
f (xlasso) almost surely, one has that

f (x∗) − f (xtrue) ≤ (λlasso + λ)

∣∣∣xlasso − xtrue
∣∣∣ , a.s. (29)

Using Corollaries 1 and 2 of [22], the RE condition and Assumptions A.1 and A.2 with
K = 1, we have that for λlasso > 0, it holds that

∣∣xlasso − xtrue
∣∣ ≤ 6λlasso


(A)
|S|, with

probability at least 1 − c′
1 exp(−c′

2nλ2lasso/σ
2) for some c′

1, c
′
2 > 0. Since λlasso =

4σ
√

ln p
n1−γ for some arbitrarily chosen γ ∈ [0, 1], combined with (29), we have

f (x∗) − f (xtrue) ≤96σ 2


(A)
|S| ln p

n1−γ
+ 24σλ


(A)
|S|

√
ln p

n1−γ
, (30)

holds with probability 1 − c1 exp(−c2nγ ln p). Invoking Lemma 1, we know that
the RE condition implies Assumption A.3 with r4|S| ≥ 
(A) > 0. Under the
assumption that ln p ≥ 1, n > 1, and 
(A) < 1, one may easily verify that,

with the given set of parameters, i.e., λ = 35

(A)

σ

√
ln p
n1−γ , a ∈ [0.80, 1), both

λ > σa−1
√

32|S|
nr4|S|

(
1 + 2

√
2nγ ln p + 4nγ ln p

)
and

Pλ(aλ) >

⎡
⎣σ 2

2n
(1 + 2

√
t + 2t) +

σ 2

n |S| · (1 + 2
√
t + 2t) + 96σ 2


(A)
|S| ln p

n + 24σλ

(A)

|S|
√

ln p
n

p̃ − 2|S| + 1

⎤
⎦
t=2nγ ln p
p̃=4|S|

are satisfied. InvokingTheorem4with x0 = x∗ (which implies f (x∗) ≤ f (x0) surely),

t = 2nγ ln p, p̃∗ = p̃ = 4|S|, r p̃∗ = r4|S|, and Γ = 96σ 2


(A)
|S| ln p

n1−γ + 24σλ

(A)

|S|
√

ln p
n1−γ ,

to show the strong oracle property of x∗, it suffices to show that both Condition B and
(18) holds.

According to Assumption A.2 with K = 1, Condition B holds if a < 1,
as assumed. Then (18) holds because of the following: Given n1−γ ≥ c3 ·

σ 2|S| ln p
mini∈S |xtrue|2·min{r4|S|, r24|S|[
(A)]2} by assumption, then (32σ 2(nr4|S|)−1|S|(1 + 2

√
2nγ ln p+ 4nγ ln p)+ 8r−2

4|S| ·λ2|S|)1/2 ≤
√

c̃3
c3

·mini∈S |xtrue| for some problem-

independent constant c̃3. We may as well let c̃3/c3 < 1. As a result, condition (18) is
satisfied. Combining Theorem 4 with (30) by the union bound, we have x∗ = xoracle,
with probability at least P∗(2nγ ln p, 4|S|) − c1 exp(−c2nγ ln p). Further invoking
(11) and the assumption that n > 1 and ln p ≥ 1, we have P∗(2nγ ln p, 4|S|) −
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c1 exp(−c2nγ ln p) ≥ 1 − c4 exp(−c5|S|nγ ln p) − c1 exp(−c2nγ ln p) for some
problem independent constants c1, c2, c4, c5 > 0.

4.1.4 Proof of Corollary 7. It follows by Lemma 1 that r4|S| ≥ 
(A) > 0. Using
Lemma 6 under the assumption that f (x∗) ≤ f (xlasso) a.s., one has that

f (x∗) − f (xtrue) ≤ (λlasso + λ)

∣∣∣xlasso − xtrue
∣∣∣ , a.s. (31)

Now we may invoke a well-known result on the recovery quality of the Lasso in the
form of (4): Invoking Corollary 2 by [22], under the RE condition and Assump-

tions A.1 and A.2 with K = 1 we have that when λlasso = 4σ
√

ln p
n , it holds

that
∣∣xlasso − xtrue

∣∣ ≤ 24σ

(A)

|S|
√

ln p
n with probability at least 1 − c1 exp(−c2 ln p)

for some c1, c2 > 0. Now combining this with (31) yields f (x∗) − f (xtrue) ≤
(λlasso + λ)

∣∣xlasso − xtrue
∣∣ ≤ 96σ 2|S|


(A)
ln p
n + 24σλ|S|


(A)

√
ln p
n , with probability at least

1 − c1 exp(−c2 ln p).
For MCP, Condition B is satisfied by Assumptions A.2, K = 1, and a < 1.

To show Part 1 of the corollary: Since we have assumed that λ = 4σ
√

ln p
n , and

a ≥ 0.8, in the MCP case of consideration, Pλ(aλ) = aλ2

2 = 8aσ 2 ln p
n ≥ 6.4 · σ 2 ln p

n ,

which ensures that 2Pλ(aλ) > σ 2

n (1 + 2
√
2 ln p + 4 ln p), given ln p ≥ 1 by

assumption. Therefore, we may invoke (a) the first part of Theorem 3 with x0 = x∗

(which implies f (x∗) ≤ f (x0) almost surely), Γ = 96σ 2


(A)
|S| ln p

n + 24σλ

(A)

|S|
√

ln p
n ,

and p̃Γ,a,λ :=
⌊

2|S|·Pλ(aλ)+ 96σ2

(A)

|S| ln p
n + 24σλ


(A)
|S|

√
ln p
n

Pλ(aλ)− σ2
2n (1+2

√
2 ln p+4 ln p)

⌋
≤ c5

|S|

(A)

; for some problem-

independent constant c5, and (b) the union bound, to obtain that 1
n ‖A(x∗ −xtrue)‖2 ≤

4σ 2

n · c5 |S|

(A)

· (1 + 2
√
2 ln p + 4 ln p

)+ 4aλ2|S| + 768σ 2


(A)
|S| ln p

n + 192σλ

(A)

|S|
√

ln p
n ≤

c6σ 2|S|

(A)

ln p
n for some problem-independent constant c6, with probability at least

P∗(2 ln p,min{p, c5|S| · [
(A)]−1}) − c1 exp(−c2 ln p). Notice that P∗ is defined
as in (11). Observing that, since ln p ≥ 1, one has 1/(1 − exp(− ln p)) < 2 and that

(A) < 1. Therefore,

P∗(2 ln p,min{p, c5|S|[
(A)]−1}) ≥ 1 − c4 exp(−c5|S| ln p),

where c4 is some problem-independent constant.

Now, consider the second part of the corollary, where λ = 35

(A)

σ

√
ln p
n , and a ∈

[0.8, 1), under the assumption that ln p ≥ 1. Since 
(A) < 1, one may easily verify
that, with the given set of parameters, we obtain p̃Γ,a,λ ≤ 4|S|. Recall that we have
shown r4|S| ≥ 
(A) > 0 at the beginning of this proof. Then we may invoke the
second part of Theorem 3 with p̃∗ = 4|S|, t = 2 ln p, x0 = x∗ (which implies
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f (x∗) ≤ f (x0) almost surely), Γ = 96σ 2


(A)
|S| ln p

n + 24σλ

(A)

|S|
√

ln p
n , and obtain that

1

n
‖A(x∗ − xtrue)‖2 ≤32σ 2|S|

n

(
1 + 2

√
2 ln p + 4 ln p

)
+ 8

λ2(|S| − ‖x∗
S‖0)

r4|S|
(32)

holds with probability at least P∗(2 ln p, 4|S|) − c1 exp(−c2
ln p) ≥ 1 − c4 exp(−c5|S| ln p) − c1 exp(−c2 ln p), where

|S| − ‖x∗
S‖0

≤
∑
i∈S

I

(
|xtruei | −

√
32σ 2|S|
nr4|S|

(
1 + 2

√
2 ln p + 4 ln p

)
+ 8

r4|S|
· λ2|S|
r4|S|

≤ 0

)
.

(33)

Recall that

λ = 35


(A)
σ

√
ln p

n
�⇒ λ2 = 1225

[
(A)]2 σ 2 ln p

n
. (34)

If it holds that n ≥ c7 · σ 2|S| ln p
ψ(xtrue)·min{r4|S|, r24|S|·[
(A)]2} , then (32(nr4|S|)−1σ 2|S|(1 +

2
√
2 ln p + 4 ln p) + 8r−2

4|S| · λ2|S|)1/2 ≤
√

c̃7
c7

· √ψ(xtrue) for some problem-

independent constant c̃7. We also recall that

√
ψ(xtrue) = max

Ssub⊆S: |Ssub|≤max{1,�|S|−r4|S|·[
(A)]2|S|�} min
i∈Ssub

|xtruei |.

which is the “max
{
1,
⌈|S| − r4|S| · [
(A)]2|S|⌉}”-th largest non-zero dimension

of xtrue. Now, we let c̃7/c7 < 1. Combined with (33), |S| − ‖x∗
S‖0 ≤∑

i∈S I

(
|xtruei | −√

c̃7ψ(xtrue) ≤ 0
)

≤ |S| − max{1, �|S| − r4|S|[
(A)]2|S|�} ≤
r4|S|[
(A)]2|S|. This with (32) and (34) completes the proof.

4.2 Auxiliary results

Lemma 2 Consider an arbitrary S3ONC solution x∗ to FCPSLR (3)with either SCAD
or MCP. For any integer p̃ : 0 ≤ p̃ ≤ p, let Assumptions A.1 and A.3 with p̃∗ ≥
p̃, i.e., r p̃∗ > 0, hold. Assume the simultaneous occurrence of (i) the event that
Condition B is satisfied with an arbitrary initial solution x0; (ii) the event that f (x∗) ≤
min{ f (x0), f (xtrue) + Γ } holds for an arbitrary Γ ≥ 0; (iii) the event that p̃ ≥
‖x∗ − xtrue‖0 obtains for some integer p̃. Then for any t > 0, 1

n ‖A(x∗ − xtrue)‖2 ≤
4σ 2

n

(
p̃ + 2

√
p̃t + 2t

)
+ 8min{∑i∈S P ′

λ(|x∗
i |)|xtruei |, Pλ(aλ) · (|S| − ‖x∗‖0) + Γ }

holds with probability at least 1 − exp (−t + p̃ ln p).
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If, in addition, Assumption A.3 holds with p̃∗ ≥ p̃, then 1
n ‖A(x∗ − xtrue)‖2 ≤

8σ 2

n

(
p̃ + 2

√
p̃t + 2t

)
+ 8min

{
λ2(|S|−‖x∗

S‖0)
r p̃

, Pλ(aλ) · (|S| − ‖x∗‖0) + Γ

}
holds

with probability at least 1 − exp (−t + p̃ ln p), where r p̃ > 0.

Proof Denote δx∗ := (δx∗
i ) = x∗ − xtrue and Sp̃ ⊆ {1, . . . , p} such that δx∗

i = 0 for
all i /∈ Sp̃. By assumption, we can ensure that ‖δx∗‖0 ≤ |Sp̃| = p̃.

Denote byASp̃ the sub-matrix ofAwith the largest size such thatASp̃ = (a j i : j =
1, . . . , n, i ∈ Sp̃). Also denote δx∗

Sp̃
:= (δx∗

i : i ∈ Sp̃). Following the argument in
Lemma 8 of [26],ASp̃ admits a singular value decompositionwithASp̃ = VSp̃ DSp̃USp̃ ,

for some matrix VSp̃ ∈ �n× p̃ with orthonormal columns, that is, V�
Sp̃
VSp̃ = I , where

I is an identity matrix. By such a construction, we have, for any υ ∈ � p̃, ‖ASp̃υ‖ =
‖DSp̃USp̃υ‖. Therefore, by the assumed event {‖x∗ − xtrue‖0 ≤ p̃}, one obtains that

∣∣∣W�Aδx∗
∣∣∣ =

∣∣∣W�ASp̃δx
∗
Sp̃

∣∣∣ ≤ ‖W�VSp̃‖‖DSp̃USp̃δx
∗
Sp̃

‖
= ‖V�

Sp̃
W‖‖ASp̃δx

∗
Sp̃

‖ ≤ inf
Sp̃ : |Sp̃ |= p̃
Sp̃⊆{1,...,p}

‖V�
Sp̃
W‖‖Aδx∗‖, a.s. (35)

We want to make use of Lemma 8, which follows Theorem 2.1 in [17], to find
an upper bound to (35). In that lemma, considering a fixed Sp̃, we let Σv = VSp̃ V

�
Sp̃
.

Noticing that (Σv)
2 = ΣvΣv = Σv . Thismeans thatΣv is an idempotentmatrix. Then

‖Σv‖ ≤ 1 andTr(Σv) = rank(Σv). HereTr(·) and rank(·) are the trace and the rank
of a matrix. Notice that VSp̃ has orthonormal columns. Therefore, VSp̃ V

�
Sp̃

is a projec-

tionmatrix onto the span of the column vectors of VSp̃ , which is at most p̃ dimensional.
Then Tr(Σ2

v ) = Tr(Σv) = rank(Σv) ≤ p̃. Now, we may invoke Lemma 8 with

the settings discussed above and obtain Prob

[
‖V�

Sp̃
W‖ ≤ σ ·

√
p̃ + 2

√
p̃t + 2t

]
≥

1 − exp(−t). This inequality can be easily extended to yield

Prob

[
sup

Sp̃ : |Sp̃ |= p̃, Sp̃⊆{1,...,p}
‖V�

Sp̃
W‖ > σ ·

√
p̃ + 2

√
p̃t + 2t

]

≤
(
p
p̃

)
· exp(−t) ≤ p p̃ · exp(−t) (36)

In this last inequality, we have not used a potentially tighter bound

(
p
p̃

)
· exp(−t) ≤(

pe
2 p̃

) p̃ · exp(−t) for the sake of notational simplicity. We shall find (36) useful soon

in the subsequent.
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Now we start to derive the claimed bound in the first part of the lemma. For conve-
nience, let us denote that

T1 := min

{∑
i∈S

P ′
λ(|x∗

i |)|xtruei |,

∑
i∈S

P ′
λ(|x∗

i |)|x∗
i − xtruei |, Pλ(aλ) · (|S| − ‖x∗‖0) + Γ

}
(37)

Invoking the second part of Lemma 7, we obtain

1

2n
‖A(x∗ − xtrue)‖2 ≤ 1

n
W�A(x∗ − xtrue) + T1, a.s. (38)

If one combines (38)with (35), conditioning on the assumed event that ‖x∗−xtrue‖0 ≤
p̃ holds,

1

2n
‖A(x∗ − xtrue)‖2 ≤ sup

Sp̃ : |Sp̃ |= p̃,
Sp̃⊆{1,...,p}

1

n
‖V�

Sp̃
W‖‖A(x∗ − xtrue)‖ + T1, a.s. (39)

By solving the inequality for 1√
n
‖A(x∗ − xtrue)‖ we obtain 1√

n
‖A(x∗ − xtrue)‖ ≤

1√
n
sup Sp̃ : |Sp̃ |= p̃,

Sp̃⊆{1,...,p}
‖V�

Sp̃
W‖+

√√√√(
1√
n
sup Sp̃ : |Sp̃ |= p̃,

Sp̃⊆{1,...,p}
‖V�

Sp̃
W‖

)2

+ 2T1, almost surely,

which implies 1
n ‖A(x∗ − xtrue)‖2 ≤ 4

n sup Sp̃ : |Sp̃ |= p̃,
Sp̃⊆{1,...,p}

‖V�
Sp̃
W‖2 + 8T1, almost surely.

Invoking (36), we know that

1

n
‖A(x∗ − xtrue)‖2 ≤ 4σ 2

n

(
p̃ + 2

√
p̃t + 2t

)
+ 8T1. (40)

with probability at least 1 − p p̃ · exp(−t) = 1 − exp (−t + p̃ ln p). This completes
the proof for the first part of the lemma by the definition of T1 in (37).

To show the second part, we notice that (a) by Corollaries 3 and 4 under Condition
B and the assumed event that f (x∗) ≤ f (x0), we have x∗

i �= 0 �⇒ |x∗
i | ≥ aλ for all

i = 1, . . . , p; (b) per properties of SCAD andMCP, for any x ∈ � such that |x | ≥ aλ,
one has P ′

λ(|x |) = 0; (c) per properties of SCAD and MCP again, 0 ≤ P ′
λ(|x |) ≤ λ

for any x ∈ �. Combining these observations yields
∑

i∈S P ′
λ(|x∗

i |)|x∗
i − xtruei | ≤

λ
√|S| − ‖x∗

S‖0 · ‖x∗ − xtrue‖ almost surely. This combined with (39) and (37)
implies 1

2n ‖A(x∗ − xtrue)‖2 ≤ supSp̃ : |Sp̃ |= p̃, Sp̃⊆{1,...,p} 1
n ‖V�

Sp̃
W‖‖A(x∗ − xtrue)‖ +

λ
√|S| − ‖x∗

S‖0 · ‖x∗ − xtrue‖ almost surely. Now by Assumption A.3 with p̃∗ ≥ p̃,
we know that r p̃ ≥ r p̃∗ > 0. Thus, we may continue from the above inequality to
obtain 1

2n ‖A(x∗ − xtrue)‖2 ≤ supSp̃ : |Sp̃ |= p̃, Sp̃⊆{1,...,p} 1
n ‖V�

Sp̃
W‖‖A(x∗ − xtrue)‖ +
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√|S| − ‖x∗
S‖0 · λ‖A(x∗−xtrue)‖√

nr p̃
almost surely, which immediately leads to 1√

n
‖A(x∗ −

xtrue)‖ ≤ supSp̃ : |Sp̃ |= p̃, Sp̃⊆{1,...,p} 2√
n
‖V�

Sp̃
W‖ + 2λ

√|S|−‖x∗
S‖0√

r p̃
almost surely. Fur-

ther invoking (36), one has 1
n ‖A(x∗ − xtrue)‖2 ≤ [2n− 1

2 (σ

√
p̃ + 2

√
p̃t + 2t) +

2λ
√|S| − ‖x∗

S‖0 · r− 1
2

p̃ ]2 ≤ 8
nσ 2

(
p̃ + 2

√
p̃t + 2t

)
+ 8λ2(|S|−‖x∗

S‖0)
r p̃

holds with

probability at least 1 − exp (−t + p̃ ln p). Now, we recall that (40) holds almost
surely conditioning on the same event. Therefore, with the same probability, one has
1
n ‖A(x∗ −xtrue)‖2 ≤ 8

nσ 2
(
p̃ + 2

√
p̃t + 2t

)
+min

{
8λ2(|S|−‖x∗

S‖0)
r p̃

, 8T1
}
, which is

immediately the desired result if we recall again the definition of T1 in (37). ��
Lemma 3 Consider an arbitrary S3ONC solution x∗ ∈ �p to FCPSLR (3)
with arbitrarily either SCAD or MCP. Assume the simultaneous occurrence of (i)
the event that p̃ ≥ ‖x∗ − xtrue‖0 obtains for some integer p̃; and (ii) Event
Ea( p̃) defined as Ea( p̃) := {n−1‖A(x∗ − xtrue)‖2 ≤ 8n−1σ 2 p̃

(
1 + 2

√
t + 2t

) +
8min{r−1

p̃ λ2(|S| − ‖x∗
S‖0), Pλ(aλ) · |S| +Γ }}. If Assumption A.3 holds for p̃∗ ≥ p̃,

then r p̃ > 0 and the following inequalities simultaneously hold a.s.:

‖x∗ − xtrue‖2 ≤ 8σ 2 p̃

nr p̃

(
1 + 2

√
t + 2t

)

+ 8

r p̃
· min

{
λ2(|S| − ‖x∗

S‖0)
r p̃

, Pλ(aλ) · |S| + Γ

}
; (41)

|x∗ − xtrue|2 ≤ 8 p̃σ 2

nr p̃

(
1 + 2

√
t + 2t

)

+8 p̃

r p̃
· min

{
λ2(|S| − ‖x∗

S‖0)
r p̃

, Pλ(aλ) · |S| + Γ

}
; (42)

and

|S| − ‖x∗
S‖0 ≤

∑
i∈S

I

(
|xtruei | −

[
8σ 2 p̃

nr p̃

(
1 + 2

√
t + 2t

)

+ 8

r p̃
· min

{
λ2|S|
r p̃

, Pλ(aλ) · |S| + Γ

}]1/2
≤ 0

)
. (43)

Proof Per Assumption A.3, r p̃ ≥ r p̃∗ > 0. Combined with the assumed event, Ea( p̃),
we immediately have

r p̃‖x∗ − xtrue‖2 ≤ 1

n
‖A(x∗ − xtrue)‖2 ≤ 8σ 2 p̃

n

(
1 + 2

√
t + 2t

)

+8 · min

{
λ2(|S| − ‖x∗

S‖0)
r p̃

, Pλ(aλ) · |S| + Γ

}
, a.s. (44)
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Furthermore, by the assumed event that p̃ ≥ ‖x∗ − xtrue‖0 holds, we obtain from the

above inequality that
r p̃
p̃ |x∗ − xtrue|2 ≤ r p̃‖x∗ − xtrue‖2 ≤ 8σ 2 p̃

n

(
1 + 2

√
t + 2t

) +
8 ·min

{
λ2(|S|−‖x∗

S‖0)
r p̃

, Pλ(aλ) · |S| + Γ

}
a.s.. This along with (44) yields the results

in (41) and (42), respectively.
To show (43), combining (44) with the fact that ‖x∗

S‖0 ≥ 0, we know that,

for all i ∈ S, almost surely, |x∗
i − xtruei | ≤ (

8σ 2 p̃
nr p̃

(
1 + 2

√
t + 2t

) + 8r−1
p̃ ·

min{λ2r−1
p̃ |S|, Pλ(aλ)|S| + Γ })1/2. As an immediate result, almost surely

|x∗
i | ≥ |xtruei | −

√
8σ 2 p̃

nr p̃

(
1 + 2

√
t + 2t

)
+ 8

r p̃
· min

{
λ2|S|
r p̃

, Pλ(aλ)|S| + Γ

}
.

Therefore, |x∗
i | > 0 if the right hand side of the above is strictly positive. As an

immediate result, ‖x∗
S‖0 ≥ ∑

i∈S I(|xtruei | − [8σ 2 p̃n−1r−1
p̃

(
1 + 2

√
t + 2t

)+ 8r−1
p̃ ·

min{λ2|S|r−1
p̃ , Pλ(aλ)|S| + Γ }]1/2 > 0) a.s., which leads to (43). ��

Lemma 4 Consider an arbitrary S3ONC solution x∗ to FCPSLR (3)with either SCAD
or MCP. Let Assumption A.3 holds with p̃∗ ≥ p̃. Assume the simultaneous occurrence
of (i) the event that Condition B is satisfied with any initial solution x0; (ii) the event
that f (x∗) ≤ f (x0) holds; (iii) the event that ‖x∗ − xtrue‖0 ≤ p̃ obtains for some
integer p̃; (iv) Event Ea( p̃). If for all i ∈ S :

|xtruei | >

√
8σ 2 p̃

nr p̃

(
1 + 2

√
t + 2t

)
+ 8

r p̃
· min

{
λ2|S|
r p̃

, Pλ(aλ)|S| + Γ

}
, (45)

then r p̃ > 0 and it holds a.s. that ‖x∗
Sc‖0 ≤ 1

a2λ2
· 8σ 2 p̃

nr p̃

(
1 + 2

√
t + 2t

)
. Furthermore,

if σa−1
√

8 p̃
nr p̃

(
1 + 2

√
t + 2t

)
< λ, then x∗ equals the oracle solution, i.e., x∗ =

xoracle ∈ arg infx∈�p : xi=0, ∀i∈Sc
1
2n ‖Ax − b‖2, a.s..

Proof Per Assumption A.3, r p̃ ≥ r p̃∗ > 0. Inequality (43) holds by invoking in
Lemma 3 under the assumed events (iii) and (iv) and Assumption A.3. Combining
(43) with the assumption of (45), we have that

‖x∗
S‖0 = |S| and |x∗

i | > 0 for all i ∈ S, a.s. (46)

Therefore, invoking the assumed Event Ea( p̃) again, one obtains that ‖x∗ −
xtrue‖2 ≤ 8σ 2 p̃

nr p̃

(
1 + 2

√
t + 2t

) + 8
r p̃

· min

{
λ2(|S|−‖x∗

S‖0)
r p̃

, Pλ(aλ)|S| + Γ

}
=

8σ 2 p̃
nr p̃

(
1 + 2

√
t + 2t

)
a.s. Due to Corollaries 3 and 4 under S3ONC and the assumed

events (i) and (ii), we know that x∗
i �= 0 �⇒ |x∗

i | ≥ aλ for all i = 1, · · · , p a.s..
Combining this with the above inequality, as well as the fact that xtruei = 0 for all
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i ∈ Sc by definition, results in a2λ2‖xSc‖0 ≤ 8σ 2 p̃
nr p̃

(
1 + 2

√
t + 2t

)
a.s., which is the

first inequality in the claimed result.

Now if we let σa−1
√

8 p̃
nr p̃

(
1 + 2

√
t + 2t

)
< λ, we know from the above inequality

that 1 > ‖xSc‖0 = 0. Consider the satisfaction of S3ONC by x∗, which implies that
x∗ also satisfies FONC. Therefore,

x∗ ∈ arg inf

{
1

2n
‖Ax − b‖2 +

p∑
i=1

P ′
λ(|x∗

i |)|xi | : x ∈ �p

}
, a.s. (47)

Further observe that inf{ 1
2n ‖Ax − b‖2 + ∑p

i=1 P
′
λ(|x∗

i |)|xi | : x ∈ �p} ≤
inf{ 1

2n ‖Ax − b‖2 + ∑p
i=1 P

′
λ(|x∗

i |)|xi | : x ∈ �p, xi = 0, ∀i ∈ Sc} a.s.
Recall that x∗

i �= 0 �⇒ |x∗
i | ≥ aλ for all i = 1, . . . , p due to Corollaries 3

and 4 under S3ONC, the assumed events (i) and (ii). Also notice that |x∗
i | > 0

for all i ∈ S as shown in (46), we then may continue the above inequality as
inf

{ 1
2n ‖Ax − b‖2 +∑

i∈Sc P ′
λ(|x∗

i |)|xi | : x ∈ �p
} ≤ inf{ 1

2n ‖Ax − b‖2 : x ∈
�p, xi = 0, ∀i ∈ Sc}. Since we have shown that x∗ satisfies (47) and x∗

i = 0 for all
i ∈ Sc almost surely, that is, x∗ is a feasible solution to {x ∈ �p : xi = 0, ∀i ∈ Sc}
a.s.We then know x∗ ∈ arg inf

{ 1
2n ‖Ax − b‖2 : x ∈ �p, xi = 0, ∀i ∈ Sc

}
a.s, which

is immediately the desired result. ��

Lemma 5 Let Assumptions A.1 hold. Consider a solution x∗ satisfying S3ONC of
FCPSLR (3) with either SCAD or MCP. Assume the simultaneous occurrence of (i)
the event that Condition B with any initial solution x0 is satisfied; and (ii) the event
that f (x∗) ≤ min{ f (x0), f (xtrue) + Γ } holds for an arbitrary Γ ≥ 0. For any
integer p̃ : 2|S| ≤ p̃ ≤ p if the penalty parameters (a, λ) satisfy that Pλ(aλ) >

σ 2

2n (1+2
√
t+2t)+ σ2

n |S|·(1+2
√
t+2t)+Γ

p̃−2|S|+1 , for an arbitrary t > 0, then ‖x∗−xtrue‖0 ≤ p̃

with probability at least 1 − exp (−( p̃ + 1)(t − ln p)) · 1−exp(−(p− p̃)(t−ln p))
1−exp(−t+ln p) .

Proof Conditioning on the event that f (x∗) ≤ f (xtrue)+Γ , we know that 1
2n ‖A(x∗−

xtrue)−W‖2+∑p
i=1 Pλ(|x∗

i |) ≤ 1
2n ‖A(xtrue−xtrue)−W‖2+∑p

i=1 Pλ(|xtruei |)+Γ

almost surely. Therefore, combined with the fact that Pλ(|x |) ≤ Pλ(aλ) for all x ∈ �,

it holds that 1
2n ‖A(x∗ − xtrue)‖2 − W�A(x∗−xtrue)

n + 1
2n ‖W‖2 + ∑p

i=1 Pλ(|x∗
i |) ≤

1
2n ‖W‖2 + |S| · Pλ(aλ) + Γ a.s.. Combining the satisfaction of S3ONC by x∗ with
(a) Corollaries 3 and 4, conditioning on both the event that Condition B holds and the
event that f (x∗) ≤ f (x0) is satisfied, which imply that |x∗| ≥ aλ unless |x∗| = 0;
and with (b) the property of Pλ that Pλ(|x |) = Pλ(aλ) for all x ∈ � : |x | ≥ aλ, one
knows that

∑p
i=1 Pλ(|x∗

i |) = ‖x∗‖0 · Pλ(aλ) a.s. Therefore,

|S| · Pλ(aλ) + Γ

≥ 1

2n
‖A(x∗ − xtrue)‖2 − W�A(x∗ − xtrue)

n
+ ‖x∗‖0 · Pλ(aλ), a.s. (48)
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Now consider an event E1 := {‖x∗ − xtrue‖0 = p̃ + k
}
for an arbitrary integer

k : 1 ≤ k ≤ p − p̃. Conditioning on this event, following the same argument as in
Lemma3 (inspired byLemma8of [26]),wemaydenote δx∗ := (δx∗

i ) = x∗−xtrue and
Sp̃+k ⊆ {1, . . . , p} such that δx∗

i = 0 for all i /∈ Sp̃+k . By assumption, we can ensure
that |Sp̃+k | = p̃+k. Also denote byASp̃+k the sub-matrix ofA of the largest size such
that ASp̃+k = (a j i : j = 1, . . . , n, i ∈ Sp̃+k) and let δx∗

Sp̃+k
:= (δx∗

i : i ∈ Sp̃+k).
Then, ASp̃+k admits a singular value decomposition with ASp̃+k = VSp̃+k DSp̃+kUSp̃+k ,

for some matrix VSp̃+k ∈ �n×( p̃+k) with orthonormal columns, i.e., V�
Sp̃+k

VSp̃+k = I ,

where I is an identity matrix and for any υ ∈ � p̃+k , ‖ASp̃+kυ‖ = ‖DSp̃+kUSp̃+kυ‖.
Therefore, one obtains that∣∣∣W�Aδx∗

∣∣∣ =
∣∣∣W�ASp̃+k δx

∗
Sp̃+k

∣∣∣ ≤ ‖W�VSp̃+k‖‖DSp̃+kUSp̃+k δx
∗
Sp̃+k

‖
= ‖V�

Sp̃+k
W‖‖ASp̃+k δx

∗
Sp̃+k

‖ ≤ inf
|Sp̃+k |= p̃+k

‖V�
Sp̃+k

W‖‖Aδx∗‖, a.s. (49)

Therefore, conditioning on Event E1 and observing that ‖x∗‖0 ≥ p̃+k−|S| almost
surely (because of Event E1 and the fact that ‖xtrue‖0 = |S|), one may continue

from (48) to obtain 1
2

( ‖A(x∗−xtrue)‖√
n

)2 − sup|Sp̃+k |= p̃+k

‖V�
Sp̃+k

W‖
√
n

· ‖A(x∗−xtrue)‖√
n

≤
− ( p̃ + k − 2|S|) · Pλ(aλ) + Γ almost surely. One may see the above as a quadratic
inequality for ‖A(x∗−xtrue)‖√

n
. From the analysis above, such an inequality is feasible

as long as f (x∗) ≤ f (xtrue) + Γ , which holds almost surely conditioning on the
assumed events. This feasibility implies that

(
sup

|Sp̃+k |= p̃+k

‖V�
Sp̃+k

W‖
√
n

)2

− 2
[
( p̃ + k − 2|S|) · Pλ(aλ) − Γ

] ≥ 0 a.s. (50)

Now consider another event E2(t) := {sup|Sp̃+k |= p̃+k ‖V�
Sp̃+k

W‖ ≤ σ
√
p̃ + k ·√

1 + 2
√
t + 2t} for an arbitrary t > 0. Conditioning on the simultaneous occur-

rence of both E1 and E2(t), we know from (50) that σ 2( p̃+k)
n · (1 + 2

√
t + 2t) ≥(

sup|Sp̃+k |= p̃+k

‖V�
Sp̃+k

W‖
√
n

)2

≥ 2
[
( p̃ + k − 2|S|) · Pλ(aλ) − Γ

]
almost surely,

which contradicts with the assumption on the parameters (a, λ) such that Pλ(aλ) >

σ 2

2n (1+ 2
√
t + 2t) + σ2

n |S|·(1+2
√
t+2t)+Γ

p̃−2|S|+1 ≥ σ 2

2n (1+ 2
√
t + 2t) + σ2

n |S|·(1+2
√
t+2t)+Γ

p̃−2|S|+k

which implies σ 2

n ( p̃ + k) · (1 + 2
√
t + 2t) < 2[( p̃ − 2|S| + k) · Pλ(aλ) − Γ ]. This

means that 0 = Prob[E1 ∩ E2(t)]. Therefore, by the union bound,

0 ≥ 1 − Prob[Ē1] − Prob[Ē2(t)] (51)

where Ē1 and Ē2(t) are the complements of E1 and E2(t), respectively. Inequality (51)
implies that Prob[Ē2(t)] ≥ Prob[E1].
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Recall the decomposition of ASp̃+k and the definition of Sp̃+k as in (49). We

want to use Lemma 8, which follows Theorem 2.1 in [17], to bound Prob[Ē2(t)].
In that lemma, we let Σv = VSp̃+k V

�
Sp̃+k

. Noticing that Σv is an idempotent
matrix, then ‖Σv‖ ≤ 1 and Tr(Σv) = rank(Σv), where Tr(·) and rank(·) are
trace and rank of a matrix. Because VSp̃+k V

�
Sp̃+k

is a projection matrix onto the

span of the column vectors of VSp̃+k , which is at most p̃ + k dimensional. Then
Tr(Σ2

v ) = Tr(Σv) = rank(Σv) ≤ p̃ + k. Now, we may invoke Lemma 8
with the settings discussed above and obtain, for a fixed Sp̃+k and an arbitrary

t ′ > 0, Prob

[
‖V�

Sp̃+k
W‖ ≤ σ ·

√
p̃ + k + 2

√
( p̃ + k)t ′ + 2t ′

]
≥ 1−exp(−t ′). Fur-

ther invoking the union bound, one obtains Prob[sup|Sp̃+k |= p̃+k ‖V�
Sp̃+k

W‖ > σ ·√
p̃ + k + 2

√
( p̃ + k)t ′ + 2t ′] ≤

(
p

p̃ + k

)
· exp(−t ′) ≤ p( p̃+k) · exp(−t ′). For nota-

tional simplicity we have not used a potentially tighter bound

(
p

p̃ + k

)
· exp(−t ′) ≤(

pe
2( p̃+k)

)( p̃+k) · exp(−t ′) for the last inequality. By letting t ′ = ( p̃ + k)t , we imme-

diately have Prob[Ē2(t)] ≤ p( p̃+k) · exp(−( p̃ + k)t).
Notice that the above argument holds for any integer k : 1 ≤ k ≤ p −

p̃. Combined with (51), one may obtain that Prob
[‖x∗ − xtrue‖0 = p̃ + k

] ≤
exp (−( p̃ + k) (t − ln p)) for all k : 1 ≤ k ≤ p− p̃. Also notice that if ‖x∗−xtrue‖0 ≥
p̃ + 1, then it must hold that ‖x∗ − xtrue‖0 ∈ { p̃ + 1, . . . , p}. Hence, invoking the
union bound, Prob[‖x∗−xtrue‖0 ≥ p̃+1] ≤ ∑p− p̃

k=1 Prob[‖x∗−xtrue‖0 = p̃+k] ≤∑p− p̃
k=1 exp (−( p̃ + k)(t − ln p)) = exp (−( p̃ + 1)(t − ln p)) · 1−exp(−(p− p̃)(t−ln p))

1−exp(−t+ln p) .
The last equality is from the geometric sum. This immediately implies the desired
result. ��

5 An S3ONC-guaranteeing algorithm and numerical results

To solve for a solution satisfying S3ONC, we adopt the potential reduction (PR) algo-
rithm based on [34]. PR converges to a second-order KKT solution, which implies the
S3ONC. See the online supplement [20] for more details. Alternative approaches such
as interior point methods in [4] are theoretically guaranteed FPTAS to a second-order
KKT solution. Since our analysis on the sparsity and statistical performance of FCP-
SLR are algorithm-independent, one may substitute PR by any S3ONC-guaranteeing
algorithms. We leave the comprehensive comparison among all alternative algorithms
for future study.

We conduct two sets of numerical tests. We compare PR with several different
initialization schemes in solving both FCPSLR-SCAD and FCPSLR-MCP. We also
compare the first-order solutions and the S3ONC solutions to FCPSLR-MCP. The
detailed experiment setups are provided in [20].

In the first test set, we consider three different initialization schemes for both
FCPSLR-SCAD and -MCP: (i) starting from the analytic center; (ii) starting from
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the all-zero solution; (iii) starting from the Lasso solution. The observations are sum-
marized in the following: Firstly, starting from any of the three initial solutions, the PR
can correctly recover the oracle solution in nearly all instances, while (iii) results in the
best performance. Secondly, the recovery qualities are fairly insensitive to the choice
between MCP and SCAD, while our theories presented formerly indicate that SCAD
often may require more conditions to ensure statistical performance. This implies that
our theoretical findings on SCAD can potentially be improved. Thirdly, when the
minimal signal strength is stronger, recovering the oracle solutions becomes easier.

The second test focuses on FCPSLR-MCP and compares between an S3ONC solu-
tion generated by PR and the FONC solution generated by local linear approximation
(LLA). LLA is a learning algorithm proposed by [39] to solve sparse estimation
problems including FCPSLR and is shown by [15] to converge to an FONC solution
asymptotically. We compare PR with the state-of-the-art variant of LLA variant pro-
posed by [13], namely, LLA initialized with the Lasso. The same paper shows the LLA
variant entails the strong oracle property under the RE condition. With the same set of
parameters and the same initialization scheme, we think that solutions generated by
PR and by LLA are different at least in terms of whether the S3ONC is ensured or only
the FONC is guaranteed. Therefore, the comparison here may essentially represent the
comparison between an S3ONC solution and a (wisely determined) FONC solution.
From the numerical results, we see that both LLA and PR yield good performance.
Nonetheless, we observe noticeable outperformance of PR over LLA for some choices
of parameters, thus showing that the S3ONC solutions are more robust than the FONC
solutions in statistical performance at least for some choices of parameters.

6 Conclusion

This paper studies the properties of an FCPSLR problem using SCAD or MCP for
regularization. Despite that the global solution is shown to entail desirable recovery
properties by [37], globally minimizing FCPSLR is NP-complete. This paper shows
that the global optimality is in fact not necessarily stipulated to ensure the recov-
ery quality. Specifically, we provide conditions for the parameters under which any
local solution is a sparse estimator. More importantly, from an algorithm-independent
point of view, we show the following results: (i) Any solution satisfying S3ONC to
FCPSLR may achieve bounded statistical errors. Furthermore, those local solutions
may even exactly recover the oracle solution, given that the minimal signal strength is
large enough. These results also reveal that the statistical performance improves poly-
nomially with the reduction in suboptimality gap. (ii) In the MCP case, the S3ONC
solutions that have a lower objective value than the Lasso solution entail the strong
oracle property. These local solutions may also dominate the Lasso in terms of ME
when sample size is greater than a certain threshold, while the worst-case ME of those
S3ONC solutions is comparable to Lasso. To our knowledge, this is the first theoreti-
cal guarantee for the statistical performance at the S3ONC solutions, disregarding the
choice of computing procedures; it is also the first attempt to reveal the correlation
between the optimization quality in solving the non-convex formulation of the learn-
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ing problem and the statistical quality in sparse recovery. An S3ONC solution admits
FPTAS, such as the interior point methods proposed by [4].

We employ PR to generate an S3ONC solution. Several predictions by our theory
are verified by the numerical results. Meanwhile, they also indicate a potential gap
between our theoretical results and the actual performance of FCPSLR-SCAD, which
is an interesting question to pursue in future. Also of future interest is a comprehensive
comparison among different S3ONC-guaranteeing algorithms.
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Appendix

Some useful Lemmas

Lemma 6 For any xtrue ∈ �p, A ∈ �n×p, W ∈ �n, b = Axtrue +W, consider f as
defined in (3) with arbitrarily either Pλ = Pλ,SC AD or Pλ = Pλ,MCP . Let x0 ∈ �p

be a feasible solution to (3). If f (x0) satisfies that f (x0) ≤ f (xlasso), where xlasso is
defined in (4) with the same problem data xtrue, A, and b as (3) and with an arbitrary
penalty parameter λlasso > 0, then f (x0)− f (xtrue) ≤ (λlasso + λ)

∣∣xlasso − xtrue
∣∣ .

Proof Denote that flasso(x) = (2n)−1‖Ax−b‖2+∑p
i=1 λlasso|xi | for any x = (xi ) ∈

�p.
Firstly, notice that by definition of xlasso in (4), flasso(xlasso) ≤ flasso(xtrue). We

then know that (2n)−1‖Axlasso−b‖2−(2n)−1‖Axtrue−b‖2 ≤ ∑p
i=1 λlasso|xtruei |−∑p

i=1 λlasso|xlassoi | ≤ ∑p
i=1 λlasso|xtruei − xlassoi | = λlasso|xtrue − xlasso|

Secondly, due to the concavity and differentiability of Pλ(·) on �+ and the fact
that 0 ≤ P ′

λ(|x |) ≤ λ for all x ∈ �,
∑p

i=1 Pλ(|xlassoi |) − ∑p
i=1 Pλ(|xtruei |) ≤∑p

i=1 P
′
λ(|xtruei |) · (|xlassoi | − |xtruei |) ≤ ∑p

i=1 P
′
λ(|xtruei |) · |xlassoi − xtruei | ≤

λ
∣∣xlasso − xtrue

∣∣.
Combining the above and the assumption that f (x0) ≤ f (xlasso), we know

that f (x0) − f (xtrue) ≤ f (xlasso) − f (xtrue) = (2n)−1‖Axlasso − b‖2 +∑p
i=1 Pλ(|xlassoi |) − (2n)−1‖Axtrue − b‖2 − ∑p

i=1 Pλ(|xtruei |) ≤ (λlasso + λ)∣∣xlasso − xtrue
∣∣ , as claimed. ��

Lemma 7 Assume that Condition B holds with initial solution x0 ∈ �p. For
any xtrue ∈ �p, A ∈ �n×p, W ∈ �n, b = Axtrue + W, and for any
x∗ = (x∗

i ) ∈ �p that satisfies (i) S3ONC to (3) with arbitrarily either Pλ =
Pλ,SC AD or Pλ = Pλ,MCP; and (ii) the inequality that f (x∗) ≤ f (x0), the
following inequality holds: (2n)−1‖A(x∗ − xtrue)‖2 ≤ n−1W�A(x∗ − xtrue) +
min

{∑
i∈S P ′

λ(|x∗
i |)|xtruei |, ∑i∈S P ′

λ(|x∗
i |)|x∗

i − xtruei |}. If, in addition, f (x∗) ≤
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f (xtrue)+Γ for an arbitraryΓ ≥ 0, then 1
2n ‖A(x∗−xtrue)‖2 ≤ 1

nW
�A(x∗−xtrue)+

min
{∑

i∈S P ′
λ(|x∗

i |)|xtruei |, ∑i∈S P ′
λ(|x∗

i |)|x∗
i −xtruei |, Pλ(aλ) · (|S|−‖x∗‖0)+Γ

}
.

Proof Notice that b = Axtrue + W . Then for any x = (xi ) ∈ �p: (2n)−1‖Ax −
b‖2 +∑p

i=1 P
′
λ(|x∗

i |)|xi | = (2n)−1‖A(x− xtrue)‖2 + (2n)−1W�W − n−1W�A(x−
xtrue) +∑p

i=1 P
′
λ(|x∗

i |)|xi |.
Since x∗ satisfies S3ONC, which implies FONC, we know that x∗ ∈ arg inf{ 1

2n ‖Ax
−b‖2+∑p

i=1 P
′
λ(|x∗

i |)|xi | : x ∈ �p}.Therefore, 1
2n ‖Ax∗−b‖2+∑p

i=1 P
′
λ(|x∗

i |)|x∗
i |

≤ 1
2n ‖Axtrue − b‖2 + ∑p

i=1 P
′
λ(|x∗

i |)|xtruei |. Combining the above, we know
that (2n)−1‖A(x∗ − xtrue)‖2 − n−1W�A(x∗ − xtrue) + ∑p

i=1 P
′
λ(|x∗

i |)|x∗
i | ≤∑p

i=1 P
′
λ(|x∗

i |)
|xtruei |. Further invoking the definitions of xtrue and S as well as triangular inequality
and the fact that P ′

λ(|x |) ≥ 0 for any x ∈ �, we have (2n)−1‖A(x∗ − xtrue)‖2 ≤
n−1W�A(x∗ − xtrue) + ∑

i∈S P ′
λ(|x∗

i |)|xtruei | − ∑p
i=1 P

′
λ(|x∗

i |)|x∗
i | ≤ n−1W�

A(x∗ − xtrue) + ∑
i∈S P ′

λ(|x∗
i |)|xtruei − x∗

i | − ∑
i∈Sc P ′

λ(|x∗
i |)|x∗

i |. We then obtain
the claimed result in the first part of the lemma.

To show the second part, by assumption, f (x∗) ≤ f (xtrue) + Γ , we know
(2n)−1‖A(x∗ −xtrue)‖2 −n−1W�A(x∗ − xtrue)+ (2n)−1‖W‖2 +∑p

i=1 Pλ(|x∗
i |) ≤

(2n)−1‖W‖2+∑p
i=1 Pλ(|xtruei |)+Γ . Noticing the fact that (i) 0 ≤ Pλ(|x |) ≤ Pλ(aλ)

for any x ∈ �, (ii) Pλ(|0|) = 0, and (iii) by definition of Sc, xtruei = 0 for
all i ∈ Sc, we hence know (2n)−1‖A(x∗ − xtrue)‖2 − n−1W�A(x∗ − xtrue) ≤
Pλ(aλ) · |S| −∑p

i=1 Pλ(|x∗
i |) + Γ . Invoking Corollaries 3 and 4 under Condition B

and the assumption that f (x∗) ≤ f (x0), we know that x∗
i �= 0 �⇒ |x∗

i | ≥ aλ.
Also notice that Pλ(|x |) = Pλ(aλ) for all x ∈ � : |x | ≥ aλ. Therefore, the
above implies

∑p
i=1 Pλ(|x∗

i |) = Pλ(aλ) · ‖x∗‖0 and (2n)−1‖A(x∗ − xtrue)‖2 −
n−1W�A(x∗ − xtrue) ≤ Pλ(aλ) · (|S| − ‖x∗‖0) + Γ . Combined with the results
from the first part of this lemma, we have the claimed result in the second part. ��
Lemma 8 Consider a subgaussian ñ-dimensional random vector W̃ in �ñ that sat-
isfies Prob[|〈W̃ , υ〉| ≥ t] ≤ 2 exp

(−t2(2σ 2)−1
)
. for any υ ∈ �ñ : ‖υ‖ = 1, then

for any V ∈ �ñ×ñ and Σv = V�V , Prob[‖V W̃‖2 ≤ σ 2(Tr(Σv) + 2
√
Tr(Σ2

v )t +
2‖Σv‖t)] ≥ 1 − exp(−t) for any t > 0, where Tr(·) denotes the trace of a matrix.

Proof Evident from Theorem 2.1 in [17]. ��
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