Prediction-based Termination Rule for Greedy Learning with Massive Data

Chen Xu¹, Shaobo Lin², Jian Fang² and Runze Li³

¹Department of Mathematics and Statistics, University of Ottawa Ottawa, ON, Canada K1N 6N5

²Department of Mathematics and Statistics, Xi'an Jiaotong University Xi'an, Shaanxi, China 710049

³Department of Statistics, The Pennsylvania State University State College, PA, USA 16801

Supplementary Material

This supplementary material provides the proofs of Proposition 1 and Theorems 1-2 of the main manuscript. The references cited in this report are listed in the main manuscript.

S1 Technical Lemmas

To facilitate our proofs, we first introduce a few technical lemmas. Specifically, let \mathcal{G} be an arbitrary set of functions (function space). We use $\mathcal{N}_{\varepsilon}(\mathcal{G}, \nu)$ to denote the covering number of \mathcal{G} by balls of radius ε with respect to a measure ν . The lemmas are presented as follows.

Lemma 1. Let \mathcal{G} be a function space defined on a random variable Z. Suppose that, for some constants $C_1, C_2 \geq 0$, we have $|g(Y) - E[g(Y)]| \leq C_1$ and $E[g(Y)^2] \leq C_2 E[g(Y)]$ for any $g \in \mathcal{G}$. Then, for any $\varepsilon > 0$,

$$\mathbf{P}\left\{\sup_{g\in\mathcal{G}}\frac{E[g(Z)] - \frac{1}{n}\sum_{i=1}^{n}g(z_i)}{\sqrt{E[g(Z)] + \varepsilon}} > \sqrt{\varepsilon}\right\} \le \mathcal{N}_{\varepsilon}(\mathcal{G}, \|.\|_{\infty})\exp\left\{-\frac{n\varepsilon}{2C_2 + \frac{2C_1}{3}}\right\},$$

where $\{z_1, \ldots, z_n\}$ is an i.i.d sample from Z and $\|.\|_{\infty}$ is the function L^{∞} norm.

Lemma 1 is a direct result from Lemma 2 of Zhou and Jetter (2006), which provides a useful probability concentration inequality to bound a function of random variable.

Lemma 2. Let \mathcal{V}_k be a k-dimensional function space defined on \mathcal{X} . Suppose that there exists a constant T such that $|v(\boldsymbol{x})| \leq T$ for any $v \in \mathcal{V}_k$ and $\boldsymbol{x} \in \mathcal{X}$. Then

$$\log \mathcal{N}_{\varepsilon}(\mathcal{V}_k, \|.\|_2) \le ck \log \frac{T}{\varepsilon},$$

where c is a positive constant and $\|.\|_2$ denotes the function L^2 norm.

Lemma 2 is implied by Corollary 2 of Mendelson and Vershinin (2003) together with Property 1 of Maiorov and Ratsaby (1999). It shows that the covering number of a bounded functional space can be also bounded properly.

Lemma 3. Let $\boldsymbol{y} = (y_1, \ldots, y_n)^T$ and \hat{f}_k be the k-step estimator defined in Algorithm 1. Then, for any $h \in \text{span}\{D_z^*\}$ and $k \in \mathbb{N}_n$,

$$\|m{y} - \hat{f}_k\|_n^2 \le \|m{y} - h\|_n^2 + rac{4\|h\|_{l_1}^2}{k},$$

where $||h||_{l_1} = \inf \left\{ \sum_{i=1}^n |\theta_i| : h = \sum_{i=1}^n \theta_i K(\boldsymbol{x}_i, \cdot) / ||K(\boldsymbol{x}_i, \cdot)||_n \right\}.$

The proof of Lemma 3 is similar to Theorem 2.3 of Barron et al. (2008). It shows a nice property of the OGA estimator in terms of the empirical approximation error.

S2 Proof of Proposition 1

Recall that the generalization error of \hat{f}_k is defined as

$$\mathcal{L}(\hat{f}_k) = \mathcal{E}(\hat{f}_k) - \mathcal{E}(f^*),$$

where $\mathcal{E}(f) = E(|f(X) - Y|^2)$ for $f \in \mathcal{F}$. Let $\mathcal{E}_n(f) = \|\boldsymbol{y} - f\|_n^2 = \frac{1}{n} \sum_{i=1}^n (y_i - f(\boldsymbol{x}_i))^2$. Then, for an arbitrary $h \in \operatorname{span}\{D_z^*\}, \mathcal{L}(\hat{f}_k)$ can be decomposed by

$$\mathcal{L}(\tilde{f}_k) = \mathcal{D} + \mathcal{P} + \mathcal{S},\tag{S2.1}$$

where

$$\mathcal{D} = \mathcal{E}(h) - \mathcal{E}(f^*) = \|h - f^*\|_{\rho_X}^2, \qquad (S2.2)$$

$$\mathcal{P} = \mathcal{E}_n(\hat{f}_k) - \mathcal{E}_n(h), \qquad (S2.2)$$

$$\mathcal{S} = \mathcal{E}_n(h) - \mathcal{E}(h) + \mathcal{E}(\hat{f}_k) - \mathcal{E}_n(\hat{f}_k).$$

By Lemma 3, we readily have

$$\mathcal{P} \le \frac{4\|h\|_{l_1}^2}{k}.$$
(S2.3)

We proceed to prove the theorem by deriving a probability bound for S. Specifically, we further decompose S by

$$\mathcal{S} = \mathcal{S}_1 + \mathcal{S}_2,\tag{S2.4}$$

where

$$\begin{aligned} \mathcal{S}_1 &= \{\mathcal{E}_n(h) - \mathcal{E}_n(f^*)\} - \{\mathcal{E}(h) - \mathcal{E}(f^*)\}, \\ \mathcal{S}_2 &= \{\mathcal{E}(\hat{f}_k) - \mathcal{E}(f^*)\} - \{\mathcal{E}_n(\hat{f}_k) - \mathcal{E}_n(f^*)\}. \end{aligned}$$

Let us first work on S_1 in (S2.4). Define

$$J(Y,X) = [Y - h(X)]^2 - [Y - f^*(X)]^2$$

= $[f^*(X) - h(X)][2Y - h(X) - f^*(X)].$

Clearly, we have

$$\mathcal{S}_1 = \frac{1}{n} \sum_{i=1}^n J(y_i, \boldsymbol{x}_i) - E[J(Y, X)]$$

In our model setup, we assume $|Y| \leq M$, which implies that

$$|J| \le (M + ||h||_{\infty})(3M + ||h||_{\infty}) \le (3M + ||h||_{\infty})^{2}.$$

Let $\xi = (3M + ||h||_{\infty})^2$. It is then easy to show that

$$|J - E(J)| \le 2\xi \quad \text{and} \quad E(J^2) \le \mathcal{D}\xi \tag{S2.5}$$

with \mathcal{D} defined in (S2.2). The bounds in (S2.5) together with Bernstein inequality (Shi, Feng, and Zhou (2011)) imply that

$$S_1 \le \frac{4\xi \log \frac{1}{\delta}}{3n} + \sqrt{\frac{2\xi \mathcal{D} \log \frac{1}{\delta}}{n}} \le \frac{7\xi \log \frac{2}{\delta}}{3n} + \frac{\mathcal{D}}{2}$$
(S2.6)

with probability at least $1 - \delta/2$ for any $\delta \in (0, 1)$.

We now turn to bound S_2 in (S2.4). Recall that V_k in Algorithm 1 is the active set formed by the k basis functions from a k-step OGA procedure. Let $\mathcal{F}_k = \{T_M[v] : v \in \text{span}\{V_k\}\}$ and g be an arbitrary element from

$$\mathcal{G}_{k} = \left\{ g(X, Y) = \{ f(X) - Y \}^{2} - \{ f^{*}(X) - Y \}^{2}, \ f \in \mathcal{F}_{k} \right\}.$$

Since both |Y| and $|f^*|$ are bounded by M, it is straightforward to show that $|g| \leq 8M^2$ and $|g - E(g)| \leq 16M^2$. Also, we have

$$E(g^2) = E\left[\{f(X) - f^*(X)\}^2 \{(f(X) - Y) + (f^*(X) - Y)\}^2\right]$$

$$\leq 16M^2 E(g).$$

Thus, Lemma 1 becomes applicable to \mathcal{G}_k with $C_1 = C_2 = 16M^2$. Note that

$$E(g) = \mathcal{L}(f) = \mathcal{E}(f) - \mathcal{E}(f^*), \quad \frac{1}{n} \sum_{i=1}^n g(y_i, \boldsymbol{x}_i) = \mathcal{E}_n(f) - \mathcal{E}_n(f^*)$$

for some corresponding $f \in \mathcal{F}_k$. This together with Lemma 1 implies that

$$\sup_{f \in \mathcal{F}_k} \left\{ \frac{\mathcal{L}(f) - \{\mathcal{E}_n(f) - \mathcal{E}_n(f^*)\}}{\sqrt{\mathcal{L}(f) + \varepsilon}} \right\} \le \sqrt{\varepsilon}$$
(S2.7)

with probability at least

$$1 - \mathcal{N}_{\varepsilon/4}\left(\mathcal{G}_k, \|.\|_{\infty}\right) \exp\left\{-\frac{3n\varepsilon}{128M^2}\right\}.$$

Note that, for any $f_1, f_2 \in \mathcal{F}_k$ and the corresponding $g_1, g_2 \in \mathcal{G}_k$, we have

$$||g_1 - g_2||_{\infty} = \max_{x,y} |(f_1(x) - y)^2 - (f_2(x) - y)^2|$$

$$\leq 4M ||f_1 - f_2||_{\infty},$$

where (x, y) denotes an arbitrary realization from (X, Y). This implies that

$$\mathcal{N}_{\varepsilon/4}\left(\mathcal{G}_{k}, \|.\|_{\infty}\right) \leq \mathcal{N}_{\varepsilon/(16M)}\left(\mathcal{F}_{k}, \|.\|_{\infty}\right)$$

$$\leq \mathcal{N}_{\varepsilon/(16M)}\left(\mathcal{F}_{k}, \|.\|_{2}\right)$$

$$\leq \exp\left\{ck\log\frac{16M^{2}}{\varepsilon}\right\}, \qquad (S2.8)$$

where the last inequality follows from Lemma 2 with T = M. By (S2.7) and (S2.8), we have

$$P\left\{S_2 \le \frac{1}{2}\mathcal{L}(\hat{f}_k) + \varepsilon\right\} \ge 1 - \exp\left\{ck\log\frac{16M^2}{\varepsilon} - \frac{3n\varepsilon}{128M^2}\right\}.$$
(S2.9)

To further specify (S2.9), let

$$h(\varepsilon) = ck \log \frac{16M^2}{\varepsilon} - \frac{3n\varepsilon}{128M^2}$$

and ε_0 be the value of ε such that $h(\varepsilon_0) = \log(\delta/2)$ for the same δ used in (S2.6). It can be shown that, by choosing

$$\varepsilon_1 = \omega \frac{k \log n + \log \frac{2}{\delta}}{n}$$

with some constant $\omega > 0$, we have $h(\varepsilon_1) \leq h(\varepsilon_0)$. Since h(.) is a decreasing function, this implies $\varepsilon_1 \geq \varepsilon_0$, and therefore

$$P\left\{\mathcal{S}_2 \le \frac{1}{2}\mathcal{L}(\hat{f}_k) + \varepsilon_1\right\} \ge 1 - \delta/2.$$
(S2.10)

Combining the results from (S2.6) and (S2.10), we have

$$P\left\{S \le \frac{\mathcal{D} + \mathcal{L}(\hat{f}_k)}{2} + \frac{7\xi \log \frac{2}{\delta}}{3n} + \varepsilon_1\right\} \ge 1 - \delta.$$
(S2.11)

Inequality (S2.11) together with (S2.2) and (S2.3) further implies that, with probability at least $1 - \delta$,

$$\begin{aligned} \mathcal{L}(\hat{f}_k) &\leq 3\|f^* - h\|_{\rho_X}^2 + \frac{8\|h\|_{l_1}^2}{k} + \frac{14\xi \log \frac{2}{\delta}}{3n} + 2\varepsilon_1 \\ &\leq 3\|f^* - h\|_{\rho_X}^2 + \frac{8\|h\|_{l_1}^2}{k} + \frac{28\log \frac{2}{\delta}\|h\|_{\infty}^2}{3n} + \frac{2\omega k \log n + 6M^2 + \log \frac{2}{\delta}}{n} \end{aligned}$$

Noting $2\log(2/\delta) > 1$, we then have, for a sufficiently large n,

$$\begin{aligned} \mathcal{L}(\hat{f}_{k}) &\leq 3\|f^{*} - h\|_{\rho_{X}}^{2} + \frac{16\log\frac{2}{\delta}\|h\|_{l_{1}}^{2}}{k} + \frac{28\log\frac{2}{\delta}\|h\|_{\infty}^{2}}{3n} + \frac{4\omega\log\frac{2}{\delta}k\log n}{n} \\ &\leq C\left[\|f^{*} - h\|_{\rho_{X}}^{2} + \log\frac{2}{\delta}\left(\frac{\|h\|_{l_{1}}^{2}}{k} + \frac{\|h\|_{\infty}^{2}}{n} + \frac{k\log n}{n}\right)\right] \end{aligned}$$

with probability at least $1-\delta$, where $C = \max\{16, 4\omega\}$. This completes the proof of Proposition 1.

S3 Proof of Theorem 1

Let $\mathcal{H}_{\infty} = \lim_{n \to \infty} \operatorname{span}\{D_z^*\}$. For an arbitrary $h \in \mathcal{H}_{\infty}$, we decompose $\mathcal{L}(\hat{f}_k)$ by

$$\mathcal{L}(\hat{f}_k) = B_1 + B_2 + B_3 + B_4, \tag{S3.1}$$

where

$$B_1 = \|h - \boldsymbol{y}\|_n^2 - \mathcal{E}(h), \quad B_2 = \mathcal{E}(\hat{f}_{k^*}) - \|\hat{f}_k^* - \boldsymbol{y}\|_n^2,$$

$$B_3 = \mathcal{E}(h) - \mathcal{E}(f^*), \quad B_4 = \|\hat{f}_k^* - \boldsymbol{y}\|_n^2 - \|h - \boldsymbol{y}\|_n^2.$$

Since $\mathcal{L}(\hat{f}_k) \geq 0$, the theorem is proved if

$$P\left\{\lim_{n \to \infty} B_j \le 0\right\} = 1 \tag{S3.2}$$

for j = 1, 2, 3, 4. By the strong law of large numbers, (S3.2) readily holds for B_1 . Thus, it suffices to show (S3.2) for B_2 , B_3 , and B_4 .

We first show (S3.2) for B_2 . Let

$$\mathcal{G}' = \left\{ g(X, Y) = \left[f(X) - Y \right]^2 : f \in \mathcal{F}_k \right\}$$

with \mathcal{F}_k same defined as in the proof of Proposition 1. Since $|Y| \leq M$, it is straightforward to show that, for any $g \in \mathcal{G}'$,

$$|g| \le 4M^2$$
, $|g - E(g)| \le 8M^2$, $E(g^2) \le 4M^2 E(g)$.

Thus, by applying Lemma 1 to \mathcal{G}' with $C_1 = C_2 = 8M^2$ and some arbitrary $\varepsilon > 0$, we have

$$\sup_{f \in \mathcal{F}_k} \left\{ \frac{\mathcal{E}(f) - \|f - \boldsymbol{y}\|_n^2}{\sqrt{\mathcal{E}(f) + \varepsilon}} \right\} > \sqrt{\varepsilon}$$
(S3.3)

with probability at most

$$\mathcal{N}_{\varepsilon/4}\left(\mathcal{G}', \|.\|_{\infty}\right) \exp\left\{-\frac{3n\varepsilon}{64M^2}\right\}.$$

Following the same arguments in (S2.8), we have

$$N_{\varepsilon/4}\left(\mathcal{G}', \|.\|_{\infty}\right) \leq \exp\left\{ck\log\frac{16M^2}{\varepsilon}\right\}$$

for some positive constant c. This together with (S3.3) implies that

$$\mathcal{E}(\hat{f}_k) - \|\hat{f}_k - \boldsymbol{y}\|_n^2 > \left[\varepsilon(4M^2 + \varepsilon)\right]^{1/2}$$
(S3.4)

with probability at most

$$P_k = \exp\left\{ck\log\frac{16M^2}{\varepsilon} - \frac{3n\varepsilon}{64M^2}\right\}.$$
(S3.5)

By setting $k = k^* = T\sqrt{n/\log n}$ with some constant $T \ge 0$, we have $\sum_{n=1}^{\infty} P_{k^*} < \infty$. Thus, by Borel-Cantelli lemma, (S3.4) and (S3.5) imply that

$$P\left\{\lim_{n \to \infty} B_2 \le \left[\varepsilon(4M^2 + \varepsilon)\right]^{1/2}\right\} = 1.$$
(S3.6)

Since ε is arbitrary, (S3.6) further implies that (S3.2) holds for B_2 .

We now proceed to show (S3.2) for B_3 and B_4 . Since $|f^*(X)| \leq M$, we have $||f^*||_{\rho_X} \leq M$. By Theorem A.1 of Györfy et al. (2002), for any $\varepsilon' > 0$, there exists a $f' \in \mathcal{C}(\mathcal{X})$ such that $||f' - f^*||_{\rho_X} \leq \varepsilon'$. Also, Condition C1 implies that \mathcal{H}_{∞} is dense in \mathcal{H}_K . These results together with Condition C2 imply that, for any $\varepsilon > 0$, there exists a $h_{\varepsilon} \in \mathcal{H}_{\infty}$ such that

$$\|h_{\varepsilon} - f^*\|_{\rho_X}^2 \le \varepsilon. \tag{S3.7}$$

By choosing $h = h_{\varepsilon}$ in (S3.1), we have (S3.2) holds for B_3 due to the arbitrariness of ε . Meanwhile, by setting $k = k^*$, Lemma 3 implies that

$$B_4 \le \frac{4\|h_{\varepsilon}\|_{l_1}^2}{k^*}.$$
(S3.8)

Since D_z^* is a normalized dictionary, (S3.7) implies that $\|h_{\varepsilon}\|_{l_1} < \infty$. Thus, the right hand side of (S3.8) goes to zero as $n \to \infty$, which implies that (S3.2) holds for B_4 . The theorem is therefore proved.

S4 Proof of Theorem 2

Proposition 1 implies that, for any $h \in \text{span}\{D_z^*\}$ and n large enough,

$$\mathcal{L}(\hat{f}_k) \le C \left\{ \|f^* - h\|_{\rho_X}^2 + \log \frac{2}{\delta} \left(\frac{\|h\|_{l_1}^2}{k} + \frac{\|h\|_{\infty}^2 + k \log n}{n} \right) \right\}$$

with probability at least $1 - \delta$ for $\delta \in (0, 1)$. When Condition C3 is satisfied with r > 0.5, we have $\|h'\|_{l_1} \leq B$ and $\|f^* - h'\|_{\rho_X} \leq \|f^* - h'\|_{\infty} \leq Bn^{-1/2}$ for some $h' \in \text{span}\{D_z^*\}$. Since K(.,.) is continues and \mathcal{X} is compact, Condition C3 also implies that $\|h'\|_{\infty}^2$ is bounded by some positive constant B'. Based on these results, we have

$$\mathcal{L}(\hat{f}_k) \le C\left\{B^2 n^{-1} + \log\frac{2}{\delta}\left(\frac{B^2}{k} + \frac{B' + k\log n}{n}\right)\right\}$$

with probability at least $1 - \delta$. By setting $k = k^* = T(n/\log n)^{1/2}$, we have

$$P\left\{\mathcal{L}(\hat{f}_k) > C' \log \frac{2}{\delta} \sqrt{\frac{\log n}{n}}\right\} \le \delta$$

for some generic positive constant C' with a sufficiently large n. Let $t = C' \log \frac{2}{\delta} (\log n/n)^{1/2}$, we then have

$$\begin{split} E[\mathcal{L}(\hat{f}_k)] &= \int_0^\infty P\{\mathcal{L}(\hat{f}_k) > t\} dt \\ &\leq \int_0^\infty 2 \exp\left\{-\frac{t}{C'} \sqrt{\frac{n}{\log n}}\right\} dt \\ &\leq 2C' \sqrt{\frac{\log n}{n}}. \end{split}$$

The theorem is therefore proved.