Prediction-based Termination Rule for Greedy Learning with Massive Data

Chen Xu^{1}, Shaobo Lin ${ }^{2}$, Jian Fang ${ }^{2}$ and Runze Li^{3}
${ }^{1}$ Department of Mathematics and Statistics, University of Ottawa Ottawa, ON, Canada K1N 6N5
${ }^{2}$ Department of Mathematics and Statistics, Xi'an Jiaotong University Xi'an, Shaanxi, China 710049
${ }^{3}$ Department of Statistics, The Pennsylvania State University State College, PA, USA 16801

Supplementary Material

This supplementary material provides the proofs of Proposition 1 and Theorems 1-2 of the main manuscript. The references cited in this report are listed in the main manuscript.

S1 Technical Lemmas

To facilitate our proofs, we first introduce a few technical lemmas. Specifically, let \mathcal{G} be an arbitrary set of functions (function space). We use $\mathcal{N}_{\varepsilon}(\mathcal{G}, \nu)$ to denote the covering number of \mathcal{G} by balls of radius ε with respect to a measure ν. The lemmas are presented as follows.

Lemma 1. Let \mathcal{G} be a function space defined on a random variable Z. Suppose that, for some constants $C_{1}, C_{2} \geq 0$, we have $|g(Y)-E[g(Y)]| \leq C_{1}$ and $E\left[g(Y)^{2}\right] \leq C_{2} E[g(Y)]$ for any $g \in \mathcal{G}$. Then, for any $\varepsilon>0$,

$$
\mathrm{P}\left\{\sup _{g \in \mathcal{G}} \frac{E[g(Z)]-\frac{1}{n} \sum_{i=1}^{n} g\left(z_{i}\right)}{\sqrt{E[g(Z)]+\varepsilon}}>\sqrt{\varepsilon}\right\} \leq \mathcal{N}_{\varepsilon}\left(\mathcal{G},\|\cdot\|_{\infty}\right) \exp \left\{-\frac{n \varepsilon}{2 C_{2}+\frac{2 C_{1}}{3}}\right\},
$$

where $\left\{z_{1}, \ldots, z_{n}\right\}$ is an i.i.d sample from Z and $\|\cdot\|_{\infty}$ is the function L^{∞} norm.
Lemma \boldsymbol{T} is a direct result from Lemma 2 of Zhou and Jetter (2006), which provides a useful probability concentration inequality to bound a function of random variable.

Lemma 2. Let \mathcal{V}_{k} be a k-dimensional function space defined on \mathcal{X}. Suppose that there exists a constant T such that $|v(\boldsymbol{x})| \leq T$ for any $v \in \mathcal{V}_{k}$ and $\boldsymbol{x} \in \mathcal{X}$. Then

$$
\log \mathcal{N}_{\varepsilon}\left(\mathcal{V}_{k},\|\cdot\|_{2}\right) \leq c k \log \frac{T}{\varepsilon}
$$

where c is a positive constant and $\|\cdot\|_{2}$ denotes the function L^{2} norm.

Lemma \square is implied by Corollary 2 of Mendelson and Vershinin (2003) together with Property 1 of Maiorov and Ratsaby (1999). It shows that the covering number of a bounded functional space can be also bounded properly.

Lemma 3. Let $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)^{T}$ and \hat{f}_{k} be the k-step estimator defined in Algorithm 1. Then, for any $h \in \operatorname{span}\left\{D_{z}^{*}\right\}$ and $k \in \mathbb{N}_{n}$,

$$
\left\|\boldsymbol{y}-\hat{f}_{k}\right\|_{n}^{2} \leq\|\boldsymbol{y}-h\|_{n}^{2}+\frac{4\|h\|_{l_{1}}^{2}}{k}
$$

where $\|h\|_{l_{1}}=\inf \left\{\sum_{i=1}^{n}\left|\theta_{i}\right|: h=\sum_{i=1}^{n} \theta_{i} K\left(\boldsymbol{x}_{i}, \cdot\right) /\left\|K\left(\boldsymbol{x}_{i}, \cdot\right)\right\|_{n}\right\}$.
The proof of Lemma is similar to Theorem 2.3 of Barron et al. (2008). It shows a nice property of the OGA estimator in terms of the empirical approximation error.

S2 Proof of Proposition 1

Recall that the generalization error of \hat{f}_{k} is defined as

$$
\mathcal{L}\left(\hat{f}_{k}\right)=\mathcal{E}\left(\hat{f}_{k}\right)-\mathcal{E}\left(f^{*}\right),
$$

where $\mathcal{E}(f)=E\left(|f(X)-Y|^{2}\right)$ for $f \in \mathcal{F}$. Let $\mathcal{E}_{n}(f)=\|\boldsymbol{y}-f\|_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(\boldsymbol{x}_{i}\right)\right)^{2}$. Then, for an arbitrary $h \in \operatorname{span}\left\{D_{z}^{*}\right\}, \mathcal{L}\left(\hat{f}_{k}\right)$ can be decomposed by

$$
\begin{equation*}
\mathcal{L}\left(\hat{f}_{k}\right)=\mathcal{D}+\mathcal{P}+\mathcal{S}, \tag{S2.1}
\end{equation*}
$$

where

$$
\begin{align*}
\mathcal{D} & =\mathcal{E}(h)-\mathcal{E}\left(f^{*}\right)=\left\|h-f^{*}\right\|_{\rho_{X}}^{2}, \tag{S2.2}\\
\mathcal{P} & =\mathcal{E}_{n}\left(\hat{f}_{k}\right)-\mathcal{E}_{n}(h), \\
\mathcal{S} & =\mathcal{E}_{n}(h)-\mathcal{E}(h)+\mathcal{E}\left(\hat{f}_{k}\right)-\mathcal{E}_{n}\left(\hat{f}_{k}\right) .
\end{align*}
$$

By Lemma [3, we readily have

$$
\begin{equation*}
\mathcal{P} \leq \frac{4\|h\|_{l_{1}}^{2}}{k} \tag{S2.3}
\end{equation*}
$$

We proceed to prove the theorem by deriving a probability bound for \mathcal{S}. Specifically, we further decompose \mathcal{S} by

$$
\begin{equation*}
\mathcal{S}=\mathcal{S}_{1}+\mathcal{S}_{2}, \tag{S2.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathcal{S}_{1}=\left\{\mathcal{E}_{n}(h)-\mathcal{E}_{n}\left(f^{*}\right)\right\}-\left\{\mathcal{E}(h)-\mathcal{E}\left(f^{*}\right)\right\}, \\
& \mathcal{S}_{2}=\left\{\mathcal{E}\left(\hat{f}_{k}\right)-\mathcal{E}\left(f^{*}\right)\right\}-\left\{\mathcal{E}_{n}\left(\hat{f}_{k}\right)-\mathcal{E}_{n}\left(f^{*}\right)\right\} .
\end{aligned}
$$

Let us first work on \mathcal{S}_{1} in (S2.4). Define

$$
\begin{aligned}
J(Y, X) & =[Y-h(X)]^{2}-\left[Y-f^{*}(X)\right]^{2} \\
& =\left[f^{*}(X)-h(X)\right]\left[2 Y-h(X)-f^{*}(X)\right]
\end{aligned}
$$

Clearly, we have

$$
\mathcal{S}_{1}=\frac{1}{n} \sum_{i=1}^{n} J\left(y_{i}, \boldsymbol{x}_{i}\right)-E[J(Y, X)] .
$$

In our model setup, we assume $|Y| \leq M$, which implies that

$$
|J| \leq\left(M+\|h\|_{\infty}\right)\left(3 M+\|h\|_{\infty}\right) \leq\left(3 M+\|h\|_{\infty}\right)^{2}
$$

Let $\xi=\left(3 M+\|h\|_{\infty}\right)^{2}$. It is then easy to show that

$$
\begin{equation*}
|J-E(J)| \leq 2 \xi \quad \text { and } \quad E\left(J^{2}\right) \leq \mathcal{D} \xi \tag{S2.5}
\end{equation*}
$$

with \mathcal{D} defined in (52.2). The bounds in (52.5) together with Bernstein inequality (Shi, Feng, and Zhou (2011)) imply that

$$
\begin{equation*}
\mathcal{S}_{1} \leq \frac{4 \xi \log \frac{1}{\delta}}{3 n}+\sqrt{\frac{2 \xi \mathcal{D} \log \frac{1}{\delta}}{n}} \leq \frac{7 \xi \log \frac{2}{\delta}}{3 n}+\frac{\mathcal{D}}{2} \tag{S2.6}
\end{equation*}
$$

with probability at least $1-\delta / 2$ for any $\delta \in(0,1)$.
We now turn to bound \mathcal{S}_{2} in (52.4). Recall that V_{k} in Algorithm 1 is the active set formed by the k basis functions from a k-step OGA procedure. Let $\mathcal{F}_{k}=\left\{T_{M}[v]: v \in \operatorname{span}\left\{V_{k}\right\}\right\}$ and g be an arbitrary element from

$$
\mathcal{G}_{k}=\left\{g(X, Y)=\{f(X)-Y\}^{2}-\left\{f^{*}(X)-Y\right\}^{2}, f \in \mathcal{F}_{k}\right\}
$$

Since both $|Y|$ and $\left|f^{*}\right|$ are bounded by M, it is straightforward to show that $|g| \leq 8 M^{2}$ and $|g-E(g)| \leq 16 M^{2}$. Also, we have

$$
\begin{aligned}
E\left(g^{2}\right) & =E\left[\left\{f(X)-f^{*}(X)\right\}^{2}\left\{(f(X)-Y)+\left(f^{*}(X)-Y\right)\right\}^{2}\right] \\
& \leq 16 M^{2} E(g)
\end{aligned}
$$

Thus, Lemma \mathbb{T} becomes applicable to \mathcal{G}_{k} with $C_{1}=C_{2}=16 M^{2}$. Note that

$$
E(g)=\mathcal{L}(f)=\mathcal{E}(f)-\mathcal{E}\left(f^{*}\right), \quad \frac{1}{n} \sum_{i=1}^{n} g\left(y_{i}, \boldsymbol{x}_{i}\right)=\mathcal{E}_{n}(f)-\mathcal{E}_{n}\left(f^{*}\right)
$$

for some corresponding $f \in \mathcal{F}_{k}$. This together with Lemma $\mathbb{D}_{\text {implies that }}$

$$
\begin{equation*}
\sup _{f \in \mathcal{F}_{k}}\left\{\frac{\mathcal{L}(f)-\left\{\mathcal{E}_{n}(f)-\mathcal{E}_{n}\left(f^{*}\right)\right\}}{\sqrt{\mathcal{L}(f)+\varepsilon}}\right\} \leq \sqrt{\varepsilon} \tag{S2.7}
\end{equation*}
$$

with probability at least

$$
1-\mathcal{N}_{\varepsilon / 4}\left(\mathcal{G}_{k},\|\cdot\|_{\infty}\right) \exp \left\{-\frac{3 n \varepsilon}{128 M^{2}}\right\} .
$$

Note that, for any $f_{1}, f_{2} \in \mathcal{F}_{k}$ and the corresponding $g_{1}, g_{2} \in \mathcal{G}_{k}$, we have

$$
\begin{aligned}
\left\|g_{1}-g_{2}\right\|_{\infty} & =\max _{x, y}\left|\left(f_{1}(x)-y\right)^{2}-\left(f_{2}(x)-y\right)^{2}\right| \\
& \leq 4 M\left\|f_{1}-f_{2}\right\|_{\infty}
\end{aligned}
$$

where (x, y) denotes an arbitrary realization from (X, Y). This implies that

$$
\begin{align*}
\mathcal{N}_{\varepsilon / 4}\left(\mathcal{G}_{k},\|\cdot\|_{\infty}\right) & \leq \mathcal{N}_{\varepsilon /(16 M)}\left(\mathcal{F}_{k},\|\cdot\|_{\infty}\right) \\
& \leq \mathcal{N}_{\varepsilon /(16 M)}\left(\mathcal{F}_{k},\|\cdot\|_{2}\right) \\
& \leq \exp \left\{c k \log \frac{16 M^{2}}{\varepsilon}\right\}, \tag{S2.8}
\end{align*}
$$

where the last inequality follows from Lemma \rrbracket with $T=M$. By (इ2.7) and (इ2.8), we have

$$
\begin{equation*}
P\left\{\mathcal{S}_{2} \leq \frac{1}{2} \mathcal{L}\left(\hat{f}_{k}\right)+\varepsilon\right\} \geq 1-\exp \left\{c k \log \frac{16 M^{2}}{\varepsilon}-\frac{3 n \varepsilon}{128 M^{2}}\right\} \tag{S2.9}
\end{equation*}
$$

To further specify (52.97), let

$$
h(\varepsilon)=c k \log \frac{16 M^{2}}{\varepsilon}-\frac{3 n \varepsilon}{128 M^{2}}
$$

and ε_{0} be the value of ε such that $h\left(\varepsilon_{0}\right)=\log (\delta / 2)$ for the same δ used in (S2.61). It can be shown that, by choosing

$$
\varepsilon_{1}=\omega \frac{k \log n+\log \frac{2}{\delta}}{n}
$$

with some constant $\omega>0$, we have $h\left(\varepsilon_{1}\right) \leq h\left(\varepsilon_{0}\right)$. Since $h($.$) is a decreasing function, this$ implies $\varepsilon_{1} \geq \varepsilon_{0}$, and therefore

$$
\begin{equation*}
P\left\{\mathcal{S}_{2} \leq \frac{1}{2} \mathcal{L}\left(\hat{f}_{k}\right)+\varepsilon_{1}\right\} \geq 1-\delta / 2 \tag{S2.10}
\end{equation*}
$$

Combining the results from (S2.6) and (52.10), we have

$$
\begin{equation*}
P\left\{\mathcal{S} \leq \frac{\mathcal{D}+\mathcal{L}\left(\hat{f}_{k}\right)}{2}+\frac{7 \xi \log \frac{2}{\delta}}{3 n}+\varepsilon_{1}\right\} \geq 1-\delta \tag{S2.11}
\end{equation*}
$$

Inequality (S_{2} $1-\delta$,

$$
\begin{aligned}
\mathcal{L}\left(\hat{f}_{k}\right) & \leq 3\left\|f^{*}-h\right\|_{\rho_{X}}^{2}+\frac{8\|h\|_{l_{1}}^{2}}{k}+\frac{14 \xi \log \frac{2}{\delta}}{3 n}+2 \varepsilon_{1} \\
& \leq 3\left\|f^{*}-h\right\|_{\rho_{X}}^{2}+\frac{8\|h\|_{l_{1}}^{2}}{k}+\frac{28 \log \frac{2}{\delta}\|h\|_{\infty}^{2}}{3 n}+\frac{2 \omega k \log n+6 M^{2}+\log \frac{2}{\delta}}{n} .
\end{aligned}
$$

Noting $2 \log (2 / \delta)>1$, we then have, for a sufficiently large n,

$$
\begin{aligned}
\mathcal{L}\left(\hat{f}_{k}\right) & \leq 3\left\|f^{*}-h\right\|_{\rho_{X}}^{2}+\frac{16 \log \frac{2}{\delta}\|h\|_{l_{1}}^{2}}{k}+\frac{28 \log \frac{2}{\delta}\|h\|_{\infty}^{2}}{3 n}+\frac{4 \omega \log \frac{2}{\delta} k \log n}{n} \\
& \leq C\left[\left\|f^{*}-h\right\|_{\rho_{X}}^{2}+\log \frac{2}{\delta}\left(\frac{\|h\|_{l_{1}}^{2}}{k}+\frac{\|h\|_{\infty}^{2}}{n}+\frac{k \log n}{n}\right)\right]
\end{aligned}
$$

with probability at least $1-\delta$, where $C=\max \{16,4 \omega\}$. This completes the proof of Proposition 1.

S3 Proof of Theorem 1

Let $\mathcal{H}_{\infty}=\lim _{n \rightarrow \infty} \operatorname{span}\left\{D_{z}^{*}\right\}$. For an arbitrary $h \in \mathcal{H}_{\infty}$, we decompose $\mathcal{L}\left(\hat{f}_{k}\right)$ by

$$
\begin{equation*}
\mathcal{L}\left(\hat{f}_{k}\right)=B_{1}+B_{2}+B_{3}+B_{4}, \tag{S3.1}
\end{equation*}
$$

where

$$
\begin{gathered}
B_{1}=\|h-\boldsymbol{y}\|_{n}^{2}-\mathcal{E}(h), \quad B_{2}=\mathcal{E}\left(\hat{f}_{k^{*}}\right)-\left\|\hat{f}_{k}^{*}-\boldsymbol{y}\right\|_{n}^{2}, \\
B_{3}=\mathcal{E}(h)-\mathcal{E}\left(f^{*}\right), \quad B_{4}=\left\|\hat{f}_{k}^{*}-\boldsymbol{y}\right\|_{n}^{2}-\|h-\boldsymbol{y}\|_{n}^{2} .
\end{gathered}
$$

Since $\mathcal{L}\left(\hat{f}_{k}\right) \geq 0$, the theorem is proved if

$$
\begin{equation*}
P\left\{\lim _{n \rightarrow \infty} B_{j} \leq 0\right\}=1 \tag{S3.2}
\end{equation*}
$$

for $j=1,2,3,4$. By the strong law of large numbers, (S3.2) readily holds for B_{1}. Thus, it suffices to show (S.3.2) for B_{2}, B_{3}, and B_{4}.

We first show (53.2) for B_{2}. Let

$$
\mathcal{G}^{\prime}=\left\{g(X, Y)=[f(X)-Y]^{2}: f \in \mathcal{F}_{k}\right\}
$$

with \mathcal{F}_{k} same defined as in the proof of Proposition 1. Since $|Y| \leq M$, it is straightforward to show that, for any $g \in \mathcal{G}^{\prime}$,

$$
|g| \leq 4 M^{2}, \quad|g-E(g)| \leq 8 M^{2}, \quad E\left(g^{2}\right) \leq 4 M^{2} E(g)
$$

Thus, by applying Lemma 四 to \mathcal{G}^{\prime} with $C_{1}=C_{2}=8 M^{2}$ and some arbitrary $\varepsilon>0$, we have

$$
\begin{equation*}
\sup _{f \in \mathcal{F}_{k}}\left\{\frac{\mathcal{E}(f)-\|f-\boldsymbol{y}\|_{n}^{2}}{\sqrt{\mathcal{E}(f)+\varepsilon}}\right\}>\sqrt{\varepsilon} \tag{S3.3}
\end{equation*}
$$

with probability at most

$$
\mathcal{N}_{\varepsilon / 4}\left(\mathcal{G}^{\prime},\|\cdot\|_{\infty}\right) \exp \left\{-\frac{3 n \varepsilon}{64 M^{2}}\right\}
$$

Following the same arguments in (S2.8), we have

$$
N_{\varepsilon / 4}\left(\mathcal{G}^{\prime},\|\cdot\|_{\infty}\right) \leq \exp \left\{c k \log \frac{16 M^{2}}{\varepsilon}\right\}
$$

for some positive constant c. This together with (S.3.3) implies that

$$
\begin{equation*}
\mathcal{E}\left(\hat{f}_{k}\right)-\left\|\hat{f}_{k}-\boldsymbol{y}\right\|_{n}^{2}>\left[\varepsilon\left(4 M^{2}+\varepsilon\right)\right]^{1 / 2} \tag{S3.4}
\end{equation*}
$$

with probability at most

$$
\begin{equation*}
P_{k}=\exp \left\{c k \log \frac{16 M^{2}}{\varepsilon}-\frac{3 n \varepsilon}{64 M^{2}}\right\} \tag{S3.5}
\end{equation*}
$$

By setting $k=k^{*}=T \sqrt{n / \log n}$ with some constant $T \geq 0$, we have $\sum_{n=1}^{\infty} P_{k^{*}}<\infty$. Thus, by Borel-Cantelli lemma, (53.4) and (53.5) imply that

$$
\begin{equation*}
P\left\{\lim _{n \rightarrow \infty} B_{2} \leq\left[\varepsilon\left(4 M^{2}+\varepsilon\right)\right]^{1 / 2}\right\}=1 . \tag{S3.6}
\end{equation*}
$$

Since ε is arbitrary, (53.6) further implies that (53.2) holds for B_{2}.
We now proceed to show (S3.2) for B_{3} and B_{4}. Since $\left|f^{*}(X)\right| \leq M$, we have $\left\|f^{*}\right\|_{\rho_{X}} \leq M$. By Theorem A. 1 of Györfy et al. (2002), for any $\varepsilon^{\prime}>0$, there exists a $f^{\prime} \in \mathcal{C}(\mathcal{X})$ such that $\left\|f^{\prime}-f^{*}\right\|_{\rho_{X}} \leq \varepsilon^{\prime}$. Also, Condition C 1 implies that \mathcal{H}_{∞} is dense in H_{K}. These results together with Condition C 2 imply that, for any $\varepsilon>0$, there exists a $h_{\varepsilon} \in \mathcal{H}_{\infty}$ such that

$$
\begin{equation*}
\left\|h_{\varepsilon}-f^{*}\right\|_{\rho_{X}}^{2} \leq \varepsilon . \tag{S3.7}
\end{equation*}
$$

By choosing $h=h_{\varepsilon}$ in (S:3.]), we have (S3.2) holds for B_{3} due to the arbitrariness of ε. Meanwhile, by setting $k=k^{*}$, Lemma implies that

$$
\begin{equation*}
B_{4} \leq \frac{4\left\|h_{\varepsilon}\right\|_{l_{1}}^{2}}{k^{*}} \tag{S3.8}
\end{equation*}
$$

Since D_{z}^{*} is a normalized dictionary, (S.3.7) implies that $\left\|h_{\varepsilon}\right\|_{l_{1}}<\infty$. Thus, the right hand side of (5..8) goes to zero as $n \rightarrow \infty$, which implies that (5.32) holds for B_{4}. The theorem is therefore proved.

S4 Proof of Theorem 2

Proposition 1 implies that, for any $h \in \operatorname{span}\left\{D_{z}^{*}\right\}$ and n large enough,

$$
\mathcal{L}\left(\hat{f}_{k}\right) \leq C\left\{\left\|f^{*}-h\right\|_{\rho_{X}}^{2}+\log \frac{2}{\delta}\left(\frac{\|h\|_{l_{1}}^{2}}{k}+\frac{\|h\|_{\infty}^{2}+k \log n}{n}\right)\right\}
$$

with probability at least $1-\delta$ for $\delta \in(0,1)$. When Condition C3 is satisfied with $r>0.5$, we have $\left\|h^{\prime}\right\|_{l_{1}} \leq B$ and $\left\|f^{*}-h^{\prime}\right\|_{\rho_{X}} \leq\left\|f^{*}-h^{\prime}\right\|_{\infty} \leq B n^{-1 / 2}$ for some $h^{\prime} \in \operatorname{span}\left\{D_{z}^{*}\right\}$. Since $K(.,$.$) is continues and \mathcal{X}$ is compact, Condition C3 also implies that $\left\|h^{\prime}\right\|_{\infty}^{2}$ is bounded by some positive constant B^{\prime}. Based on these results, we have

$$
\mathcal{L}\left(\hat{f}_{k}\right) \leq C\left\{B^{2} n^{-1}+\log \frac{2}{\delta}\left(\frac{B^{2}}{k}+\frac{B^{\prime}+k \log n}{n}\right)\right\}
$$

with probability at least $1-\delta$. By setting $k=k^{*}=T(n / \log n)^{1 / 2}$, we have

$$
P\left\{\mathcal{L}\left(\hat{f}_{k}\right)>C^{\prime} \log \frac{2}{\delta} \sqrt{\frac{\log n}{n}}\right\} \leq \delta
$$

for some generic positive constant C^{\prime} with a sufficiently large n. Let $t=C^{\prime} \log \frac{2}{\delta}(\log n / n)^{1 / 2}$, we then have

$$
\begin{aligned}
E\left[\mathcal{L}\left(\hat{f}_{k}\right)\right] & =\int_{0}^{\infty} P\left\{\mathcal{L}\left(\hat{f}_{k}\right)>t\right\} d t \\
& \leq \int_{0}^{\infty} 2 \exp \left\{-\frac{t}{C^{\prime}} \sqrt{\frac{n}{\log n}}\right\} d t \\
& \leq 2 C^{\prime} \sqrt{\frac{\log n}{n}}
\end{aligned}
$$

The theorem is therefore proved.

