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S1 Technical Lemmas

To facilitate our proofs, we first introduce a few technical lemmas. Specifically, let G be an

arbitrary set of functions (function space). We use Nε(G, ν) to denote the covering number of

G by balls of radius ε with respect to a measure ν. The lemmas are presented as follows.

Lemma 1. Let G be a function space defined on a random variable Z. Suppose that, for some

constants C1, C2 ≥ 0, we have |g(Y )−E[g(Y )]| ≤ C1 and E[g(Y )2] ≤ C2E[g(Y )] for any g ∈ G.
Then, for any ε > 0,

P

{
sup
g∈G

E[g(Z)]− 1
n

∑n
i=1 g(zi)√

E[g(Z)] + ε
>
√
ε

}
≤ Nε(G, ∥.∥∞) exp

{
− nε

2C2 +
2C1
3

}
,

where {z1, . . . , zn} is an i.i.d sample from Z and ∥.∥∞ is the function L∞ norm.

Lemma 1 is a direct result from Lemma 2 of Zhou and Jetter (2006), which provides a

useful probability concentration inequality to bound a function of random variable.

Lemma 2. Let Vk be a k-dimensional function space defined on X . Suppose that there exists

a constant T such that |v(x)| ≤ T for any v ∈ Vk and x ∈ X . Then

logNε(Vk, ∥.∥2) ≤ ck log
T

ε
,

where c is a positive constant and ∥.∥2 denotes the function L2 norm.
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Lemma 2 is implied by Corollary 2 of Mendelson and Vershinin (2003) together with

Property 1 of Maiorov and Ratsaby (1999). It shows that the covering number of a bounded

functional space can be also bounded properly.

Lemma 3. Let y = (y1, . . . , yn)
T and f̂k be the k-step estimator defined in Algorithm 1. Then,

for any h ∈ span{D∗
z} and k ∈ Nn,

∥y − f̂k∥2n ≤ ∥y − h∥2n +
4∥h∥2l1

k
,

where ∥h∥l1 = inf
{∑n

i=1 |θi| : h =
∑n

i=1 θiK(xi, ·)/∥K(xi, ·)∥n
}
.

The proof of Lemma 3 is similar to Theorem 2.3 of Barron et al. (2008). It shows a nice

property of the OGA estimator in terms of the empirical approximation error.

S2 Proof of Proposition 1

Recall that the generalization error of f̂k is defined as

L(f̂k) = E(f̂k)− E(f∗),

where E(f) = E(|f(X)− Y |2) for f ∈ F . Let En(f) = ∥y − f∥2n = 1
n

∑n
i=1(yi − f(xi))

2. Then,

for an arbitrary h ∈ span{D∗
z}, L(f̂k) can be decomposed by

L(f̂k) = D + P + S, (S2.1)

where

D = E(h)− E(f∗) = ∥h− f∗∥2ρX , (S2.2)

P = En(f̂k)− En(h),

S = En(h)− E(h) + E(f̂k)− En(f̂k).

By Lemma 3, we readily have

P ≤
4∥h∥2l1

k
. (S2.3)

We proceed to prove the theorem by deriving a probability bound for S. Specifically, we further
decompose S by

S = S1 + S2, (S2.4)

where

S1 = {En(h)− En(f
∗)} − {E(h)− E(f∗)},

S2 = {E(f̂k)− E(f∗)} − {En(f̂k)− En(f
∗)}.

Let us first work on S1 in (S2.4). Define

J(Y,X) = [Y − h(X)]2 − [Y − f∗(X)]2

= [f∗(X)− h(X)][2Y − h(X)− f∗(X)].
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Clearly, we have

S1 =
1

n

n∑
i=1

J(yi,xi)− E[J(Y,X)].

In our model setup, we assume |Y | ≤ M , which implies that

|J | ≤ (M + ∥h∥∞)(3M + ∥h∥∞) ≤ (3M + ∥h∥∞)2.

Let ξ = (3M + ∥h∥∞)2. It is then easy to show that

|J − E(J)| ≤ 2ξ and E(J2) ≤ Dξ (S2.5)

with D defined in (S2.2). The bounds in (S2.5) together with Bernstein inequality (Shi, Feng,

and Zhou (2011)) imply that

S1 ≤
4ξ log 1

δ

3n
+

√
2ξD log 1

δ

n
≤

7ξ log 2
δ

3n
+

D
2

(S2.6)

with probability at least 1− δ/2 for any δ ∈ (0, 1).

We now turn to bound S2 in (S2.4). Recall that Vk in Algorithm 1 is the active set formed

by the k basis functions from a k-step OGA procedure. Let Fk = {TM [v] : v ∈ span{Vk}} and

g be an arbitrary element from

Gk =
{
g(X,Y ) = {f(X)− Y }2 − {f∗(X)− Y }2, f ∈ Fk

}
.

Since both |Y | and |f∗| are bounded by M , it is straightforward to show that |g| ≤ 8M2 and

|g − E(g)| ≤ 16M2. Also, we have

E(g2) = E
[
{f(X)− f∗(X)}2 {(f(X)− Y ) + (f∗(X)− Y )}2

]
≤ 16M2E(g).

Thus, Lemma 1 becomes applicable to Gk with C1 = C2 = 16M2. Note that

E(g) = L(f) = E(f)− E(f∗),
1

n

n∑
i=1

g(yi,xi) = En(f)− En(f
∗)

for some corresponding f ∈ Fk. This together with Lemma 1 implies that

sup
f∈Fk

{
L(f)− {En(f)− En(f

∗)}√
L(f) + ε

}
≤

√
ε (S2.7)

with probability at least

1−Nε/4 (Gk, ∥.∥∞) exp

{
− 3nε

128M2

}
.

Note that, for any f1, f2 ∈ Fk and the corresponding g1, g2 ∈ Gk, we have

∥g1 − g2∥∞ = max
x,y

∣∣(f1(x)− y)2 − (f2(x)− y)2
∣∣

≤ 4M∥f1 − f2∥∞,
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where (x, y) denotes an arbitrary realization from (X,Y ). This implies that

Nε/4 (Gk, ∥.∥∞) ≤ Nε/(16M) (Fk, ∥.∥∞)

≤ Nε/(16M) (Fk, ∥.∥2)

≤ exp

{
ck log

16M2

ε

}
, (S2.8)

where the last inequality follows from Lemma 2 with T = M . By (S2.7) and (S2.8), we have

P

{
S2 ≤ 1

2
L(f̂k) + ε

}
≥ 1− exp

{
ck log

16M2

ε
− 3nε

128M2

}
. (S2.9)

To further specify (S2.9), let

h(ε) = ck log
16M2

ε
− 3nε

128M2

and ε0 be the value of ε such that h(ε0) = log(δ/2) for the same δ used in (S2.6). It can be

shown that, by choosing

ε1 = ω
k logn+ log 2

δ

n

with some constant ω > 0, we have h(ε1) ≤ h(ε0). Since h(.) is a decreasing function, this

implies ε1 ≥ ε0, and therefore

P

{
S2 ≤ 1

2
L(f̂k) + ε1

}
≥ 1− δ/2. (S2.10)

Combining the results from (S2.6) and (S2.10), we have

P

{
S ≤ D + L(f̂k)

2
+

7ξ log 2
δ

3n
+ ε1

}
≥ 1− δ. (S2.11)

Inequality (S2.11) together with (S2.2) and (S2.3) further implies that, with probability at least

1− δ,

L(f̂k) ≤ 3∥f∗ − h∥2ρX +
8∥h∥2l1

k
+

14ξ log 2
δ

3n
+ 2ε1

≤ 3∥f∗ − h∥2ρX +
8∥h∥2l1

k
+

28 log 2
δ
∥h∥2∞

3n
+

2ωk logn+ 6M2 + log 2
δ

n
.

Noting 2 log(2/δ) > 1, we then have, for a sufficiently large n,

L(f̂k) ≤ 3∥f∗ − h∥2ρX +
16 log 2

δ
∥h∥2l1

k
+

28 log 2
δ
∥h∥2∞

3n
+

4ω log 2
δ
k logn

n

≤ C

[
∥f∗ − h∥2ρX + log

2

δ

(
∥h∥2l1
k

+
∥h∥2∞
n

+
klogn

n

)]

with probability at least 1−δ, where C = max{16, 4ω}. This completes the proof of Proposition

1.
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S3 Proof of Theorem 1

Let H∞ = limn→∞ span{D∗
z}. For an arbitrary h ∈ H∞, we decompose L(f̂k) by

L(f̂k) = B1 +B2 +B3 +B4, (S3.1)

where

B1 = ∥h− y∥2n − E(h), B2 = E(f̂k∗)− ∥f̂∗
k − y∥2n,

B3 = E(h)− E(f∗), B4 = ∥f̂∗
k − y∥2n − ∥h− y∥2n.

Since L(f̂k) ≥ 0, the theorem is proved if

P
{

lim
n→∞

Bj ≤ 0
}
= 1 (S3.2)

for j = 1, 2, 3, 4. By the strong law of large numbers, (S3.2) readily holds for B1. Thus, it

suffices to show (S3.2) for B2, B3, and B4.

We first show (S3.2) for B2. Let

G′ =
{
g(X,Y ) = [f(X)− Y ]2 : f ∈ Fk

}
with Fk same defined as in the proof of Proposition 1. Since |Y | ≤ M , it is straightforward to

show that, for any g ∈ G′,

|g| ≤ 4M2, |g − E(g)| ≤ 8M2, E(g2) ≤ 4M2E(g).

Thus, by applying Lemma 1 to G′ with C1 = C2 = 8M2 and some arbitrary ε > 0, we have

sup
f∈Fk

{
E(f)− ∥f − y∥2n√

E(f) + ε

}
>

√
ε (S3.3)

with probability at most

Nε/4

(
G′, ∥.∥∞

)
exp

{
− 3nε

64M2

}
.

Following the same arguments in (S2.8), we have

Nε/4

(
G′, ∥.∥∞

)
≤ exp

{
ck log

16M2

ε

}
for some positive constant c. This together with (S3.3) implies that

E(f̂k)− ∥f̂k − y∥2n >
[
ε(4M2 + ε)

]1/2
(S3.4)

with probability at most

Pk = exp

{
ck log

16M2

ε
− 3nε

64M2

}
. (S3.5)
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By setting k = k∗ = T
√

n/ logn with some constant T ≥ 0, we have
∑∞

n=1 Pk∗ < ∞. Thus, by

Borel-Cantelli lemma, (S3.4) and (S3.5) imply that

P
{

lim
n→∞

B2 ≤
[
ε(4M2 + ε)

]1/2}
= 1. (S3.6)

Since ε is arbitrary, (S3.6) further implies that (S3.2) holds for B2.

We now proceed to show (S3.2) for B3 and B4. Since |f∗(X)| ≤ M , we have ∥f∗∥ρX ≤ M .

By Theorem A.1 of Györfy et al. (2002), for any ε′ > 0, there exists a f ′ ∈ C(X ) such that

∥f ′ − f∗∥ρX ≤ ε′. Also, Condition C1 implies that H∞ is dense in HK . These results together

with Condition C2 imply that, for any ε > 0, there exists a hε ∈ H∞ such that

∥hε − f∗∥2ρX ≤ ε. (S3.7)

By choosing h = hε in (S3.1), we have (S3.2) holds for B3 due to the arbitrariness of ε.

Meanwhile, by setting k = k∗, Lemma 3 implies that

B4 ≤
4∥hε∥2l1

k∗ . (S3.8)

Since D∗
z is a normalized dictionary, (S3.7) implies that ∥hε∥l1 < ∞. Thus, the right hand

side of (S3.8) goes to zero as n → ∞, which implies that (S3.2) holds for B4. The theorem is

therefore proved.

S4 Proof of Theorem 2

Proposition 1 implies that, for any h ∈ span{D∗
z} and n large enough,

L(f̂k) ≤ C

{
∥f∗ − h∥2ρX + log

2

δ

(
∥h∥2l1
k

+
∥h∥2∞ + k logn

n

)}

with probability at least 1 − δ for δ ∈ (0, 1). When Condition C3 is satisfied with r > 0.5, we

have ∥h′∥l1 ≤ B and ∥f∗ − h′∥ρX ≤ ∥f∗ − h′∥∞ ≤ Bn−1/2 for some h′ ∈ span{D∗
z}. Since

K(., .) is continues and X is compact, Condition C3 also implies that ∥h′∥2∞ is bounded by some

positive constant B′. Based on these results, we have

L(f̂k) ≤ C

{
B2n−1 + log

2

δ

(
B2

k
+

B′ + k logn

n

)}

with probability at least 1− δ. By setting k = k∗ = T (n/ logn)1/2, we have

P

{
L(f̂k) > C′ log

2

δ

√
logn

n

}
≤ δ
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for some generic positive constant C′ with a sufficiently large n. Let t = C′ log 2
δ
(logn/n)1/2,

we then have

E[L(f̂k)] =

∫ ∞

0

P{L(f̂k) > t}dt

≤
∫ ∞

0

2 exp

{
− t

C′

√
n

logn

}
dt

≤ 2C′
√

logn

n
.

The theorem is therefore proved.
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