SUPPLEMENT TO "MODEL-FREE FORWARD SCREENING VIA CUMULATIVE DIVERGENCE"

Tingyou Zhou ${ }^{\text {a }}$, Liping Zhu ${ }^{\text {b }}$, Chen Xu^{c} and Runze Li ${ }^{\mathrm{d}}$
${ }^{\text {a }}$ School of Data Sciences, Zhejiang University of Finance and Economics, Hangzhou, P. R. China. ${ }^{\text {b }}$ Institute of Statistics and Big Data and Center for Applied Statistics, Renmin University of China, Beijing, P. R. China. ${ }^{\text {c }}$ Department of Mathematics and Statistics University of Ottawa, Ottawa, Canada. ${ }^{d}$ Department of Statistics and The Methodology Center, The Pennsylvania State University at University Park, U.S.A.

Some Lemmas

Stein's Lemma: Let $X \sim \mathcal{N}(0,1)$, and $g: \mathbb{R} \rightarrow \mathbb{R}$ be an indefinite integral of the Lebesgue measurable function g^{\prime}, the derivative of g. Suppose $E\left(\left|g^{\prime}(X)\right|\right)<\infty$, then $E\left\{g^{\prime}(X)\right\}=E\{X g(X)\}$. Interested readers can refer to Stein (1981) for details.

Lemma 1. Assume $X \sim \mathcal{N}(0,1), A$ and B are constants and all the moments involved exist. Denote $F(y \mid X)=\operatorname{pr}(Y<y \mid X)$. It follows that

$$
\begin{aligned}
E\left[\exp \left\{-A(X-B)^{2}\right\}\right] & =(2 A+1)^{-1 / 2} \exp \left\{-A B^{2} /(2 A+1)\right\} \text { and } \\
E\{\partial F(y \mid X) / \partial X\} & =E\{F(y \mid X) X\}=E\{\mathbf{1}(Y<y) X\}
\end{aligned}
$$

Proof of Lemma 1: The first statement is straightforward and the second is a direct application of Stein (1981)'s lemma.

Proofs of Statement (2.2), Lemma 2, Proposition 1 and Theorem 1

Proof of Statement (2.2): We show the first equivalence. The \Rightarrow part is obvious by noting that $E\left(Y \mid X<x_{0}\right)=E\left\{Y \mathbf{1}\left(X<x_{0}\right)\right\} / E\left\{\mathbf{1}\left(X<x_{0}\right)\right\}$. Next we show the \Leftarrow part. Without loss of generality we assume $E(Y)=0$ because otherwise we let $\widetilde{Y}=Y-E(Y)$. We need to prove that $E\left\{Y \mathbf{1}\left(X<x_{0}\right)\right\}=0$ implies that $E(Y \mid X)=0$.

By definition,

$$
E\left\{Y \mathbf{1}\left(X<x_{0}\right)\right\}=E\left\{E(Y \mid X) \mathbf{1}\left(X<x_{0}\right)\right\}=\int_{-\infty}^{x_{0}} E(Y \mid X=x) f(x) d x
$$

[^0]Thinking that $E\left\{Y \mathbf{1}\left(X<x_{0}\right)\right\}=0$ implies that the first derivative of $\int_{-\infty}^{x_{0}} E(Y \mid X=$ $x) f(x) d x$ with respect to x_{0}, which is $E\left(Y \mid X=x_{0}\right) f\left(x_{0}\right)$, is also 0 . By definition, $x_{0} \in \operatorname{supp}(X)$ and hence $f\left(x_{0}\right)>0, E\left(Y \mid X=x_{0}\right)$ must be 0 for all $x_{0} \in \operatorname{supp}(X)$. This completes the proof of the first equivalence.

The second equivalence is obvious by using the fact that $E\left(Y \mid X<x_{0}\right)=$ $E\left\{Y \mathbf{1}\left(X<x_{0}\right)\right\} / E\left\{\mathbf{1}\left(X<x_{0}\right)\right\}$. The third equivalence is also obvious. This completes the proof of Statement (2.2).

Proof of Lemma 2; Define $\boldsymbol{\Sigma}_{k \mid \mathcal{F}}=E\left[\left\{g_{k \mid \mathcal{F}}^{\prime}\left(\mathbf{x}_{\mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right\}\left\{g_{k \mid \mathcal{F}}^{\prime}\left(\mathbf{x}_{\mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right\}^{\mathrm{T}}\right]$, we first prove that

$$
\begin{align*}
\left(\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}-\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right) & =n^{-1} \boldsymbol{\Sigma}_{k \mid \mathcal{F}}^{-1} \sum_{i=1}^{n}\left\{X_{i k}-g_{k \mid \mathcal{F}}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right\} g_{k \mid \mathcal{F}}^{\prime}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right) \\
& +o_{p}\left(n^{-1 / 2}\right) \tag{S.1}
\end{align*}
$$

Let $\boldsymbol{\Omega}_{n, k \mid \mathcal{F}}\left(\boldsymbol{\beta}_{k \mid \mathcal{F}}\right)=\sum_{i=1}^{n}\left\{X_{i k}-g_{k \mid \mathcal{F}}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{k \mid \mathcal{F}}\right)\right\} g_{k \mid \mathcal{F}}^{\prime}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{k \mid \mathcal{F}}\right)$, then we have $\boldsymbol{\Omega}_{n, k \mid \mathcal{F}}\left(\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}\right)=\mathbf{0}$ for $\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}$ defined in 3.3 . Applying Taylor's expansion, we get

$$
\begin{aligned}
\mathbf{0}=\boldsymbol{\Omega}_{n, k \mid \mathcal{F}}\left(\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right) & +\boldsymbol{\Omega}_{n, k \mid \mathcal{F}}^{\prime}\left(\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\left(\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}-\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right) \\
& +\left(\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}-\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)^{\mathrm{T}} \boldsymbol{\Omega}_{n, k \mid \mathcal{F}}^{\prime \prime}\left(\boldsymbol{\beta}_{k \mid \mathcal{F}}^{*}\right)\left(\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}-\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right) / 2
\end{aligned}
$$

where $\boldsymbol{\beta}_{k \mid \mathcal{F}}^{*}$ lies between $\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}$ and $\boldsymbol{\beta}_{0, k \mid \mathcal{F}}$. Consequently we have

$$
\begin{aligned}
\boldsymbol{\Sigma}_{k \mid \mathcal{F}}\left(\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}-\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right) & =n^{-1} \boldsymbol{\Omega}_{n, k \mid \mathcal{F}}\left(\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)+\left\{\boldsymbol{\Sigma}_{k \mid \mathcal{F}}+n^{-1} \boldsymbol{\Omega}_{n, k \mid \mathcal{F}}^{\prime}\left(\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right\}\left(\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}-\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right) \\
& +(2 n)^{-1}\left(\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}-\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)^{\mathrm{T}} \boldsymbol{\Omega}_{n, k \mid \mathcal{F}}^{\prime \prime}\left(\boldsymbol{\beta}_{k \mid \mathcal{F}}^{*}\right)\left(\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}-\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)
\end{aligned}
$$

Invoking assumptions on $g_{k \mid \mathcal{F}}(\cdot)$, we have

$$
\begin{array}{r}
n^{-1} \sum_{i=1}^{n}\left[g_{k \mid \mathcal{F}}^{\prime}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\left\{g_{k \mid \mathcal{F}}^{\prime}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right\}^{\mathrm{T}}-\mathbf{\Sigma}_{k \mid \mathcal{F}}\right]=O_{p}\left(n^{-1 / 2} s\right) \text {, and } \\
n^{-1} \sum_{i=1}^{n}\left\{X_{i k}-g_{k \mid \mathcal{F}}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right\} g_{k \mid \mathcal{F}}^{\prime \prime}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)=O_{p}\left(n^{-1 / 2} s\right),
\end{array}
$$

where $s=|\mathcal{F}|$. This leads to $\boldsymbol{\Sigma}_{k \mid \mathcal{F}}+n^{-1} \boldsymbol{\Omega}_{n, k \mid \mathcal{F}}^{\prime}\left(\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)=O_{p}\left(n^{-1 / 2} s\right)$. Using similar arguments, we have $\boldsymbol{\Omega}_{n, k \mid \mathcal{F}}^{\prime \prime}\left(\boldsymbol{\beta}_{k \mid \mathcal{F}}^{*}\right)=O_{p}\left(n s^{3 / 2}\right)$ and $\left\|\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}-\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right\|=O_{p}\left(n^{-1 / 2} s^{1 / 2}\right)$,
where $\|\cdot\|$ denotes the Euclidean norm. Then we obtain

$$
\boldsymbol{\Sigma}_{k \mid \mathcal{F}}\left(\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}-\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)=n^{-1} \boldsymbol{\Omega}_{n, k \mid \mathcal{F}}\left(\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)+O_{p}\left(n^{-1} s^{3 / 2}\right)+O_{p}\left(n^{-1} s^{5 / 2}\right)
$$

This proves S.1 when $s=o\left(n^{1 / 5}\right)$.
We next introduce some notations which will be frequently used. For vector $\boldsymbol{\beta}$, let $\|\boldsymbol{\beta}\|_{\infty}=\max _{j}\left|\beta_{j}\right|$. For $m \times n$ matrix \mathbf{M}, define $\|\mathbf{M}\|_{\infty}=\max _{i=1, \ldots, m} \sum_{j=1}^{n}\left|M_{i j}\right|$. Note that

$$
\operatorname{pr}\left\{\left(\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}-\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)^{\mathrm{T}}\left(\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}-\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)>\varepsilon_{n}\right\}<\operatorname{pr}\left\{\left(\left\|\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}-\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right\|_{\infty}\right)^{2}>\varepsilon_{n} / s\right\}
$$

and $\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}-\boldsymbol{\beta}_{0, k \mid \mathcal{F}}=n^{-1} \boldsymbol{\Sigma}_{k \mid \mathcal{F}}^{-1} \sum_{i=1}^{n} g_{k \mid \mathcal{F}}^{\prime}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right) \delta_{i, k \mid \mathcal{F}}+o_{p}\left(n^{-1 / 2}\right)$, where $\delta_{i, k \mid \mathcal{F}}=$ $X_{i k}-g_{k \mid \mathcal{F}}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)$ are independent. Thus,

$$
\operatorname{pr}\left\{\left\|\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}-\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right\|_{\infty}>\left(\varepsilon_{n} / s\right)^{1 / 2}\right\}=\operatorname{pr}\left\{\left\|n^{-1} \boldsymbol{\Sigma}_{k \mid \mathcal{F}}^{-1} \sum_{i=1}^{n} g_{k \mid \mathcal{F}}^{\prime}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right) \delta_{i, k \mid \mathcal{F}}\right\|_{\infty}>\left(\varepsilon_{n} / s\right)^{1 / 2}\right\}
$$

Recall that we assume the infinity norm of the precision matrix is bounded. That is, there must exists a constant c_{0} such that $\left\|\boldsymbol{\Sigma}_{\mathcal{F}}^{-1}\right\|_{\infty}<c_{0}$. Thus, there exists a positive constant c_{1} such that

$$
\begin{aligned}
& \operatorname{pr}\left\{\left\|\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}-\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right\|_{\infty}>\left(\varepsilon_{n} / s\right)^{1 / 2}\right\} \\
\leq & \operatorname{pr}\left\{\left\|\boldsymbol{\Sigma}_{k \mid \mathcal{F}}^{-1}\right\|_{\infty}\left\|n^{-1} \sum_{i=1}^{n} g_{k \mid \mathcal{F}}^{\prime}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right) \delta_{i, k \mid \mathcal{F}}\right\|_{\infty}>\left(\varepsilon_{n} / s\right)^{1 / 2}\right\} \\
\leq & s \max _{l \in \mathcal{F}} \operatorname{pr}\left\{\left|n^{-1} \sum_{i=1}^{n} g_{l, k \mid \mathcal{F}}^{\prime}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right) \delta_{i, k \mid \mathcal{F}}\right|>\left(\varepsilon_{n} / s\right)^{1 / 2} / c_{0}\right\} \leq 2 s \exp \left(-c_{1} n s^{-1} \varepsilon_{n}\right),
\end{aligned}
$$

where $g_{l, k \mid \mathcal{F}}^{\prime}(\cdot)$ is the l-th element of $g_{k \mid \mathcal{F}}^{\prime}(\cdot)$, and the last inequality holds by Lemma 1 . This completes the proof of Lemma 2 .

Proof of Proposition 1: By definition, $\widehat{\omega}_{k \mid \mathcal{F}}=\widehat{\operatorname{CCov}}\left\{\left(X_{k}-\mu_{k \mid \mathcal{F}}\right) \mid Y\right\} / \widehat{\operatorname{var}}\left(X_{k}-\right.$ $\left.\mu_{k \mid \mathcal{F}}\right)$ and $\omega_{k \mid \mathcal{F}}=\operatorname{Cov}\left\{\left(X_{k}-\mu_{k \mid \mathcal{F}}\right) \mid Y\right\} / \operatorname{var}\left(X_{k}-\mu_{k \mid \mathcal{F}}\right)$, where $\mu_{k \mid \mathcal{F}} \stackrel{\text { def }}{=} E\left(X_{k} \mid \mathbf{x}_{\mathcal{F}}\right)$. We decompose $\widehat{\omega}_{k \mid \mathcal{F}}-\omega_{k \mid \mathcal{F}}$ into four parts. In particular, $\widehat{\omega}_{k \mid \mathcal{F}}-\omega_{k \mid \mathcal{F}}=I_{1}+I_{2}+I_{3}+I_{4}$,
where

$$
\begin{aligned}
& I_{1} \stackrel{\text { def }}{=} {\left[\widehat{\operatorname{Cov}}\left\{\left(X_{k}-\mu_{k \mid \mathcal{F}}\right) \mid Y\right\}-\operatorname{CCov}\left\{\left(X_{k}-\mu_{k \mid \mathcal{F}}\right) \mid Y\right\}\right]\left\{\operatorname{var}\left(X_{k}-\mu_{k \mid \mathcal{F}}\right)\right\}^{-1}, } \\
& I_{2} \stackrel{\text { def }}{=} \omega_{k \mid \mathcal{F}}\left\{\operatorname{var}\left(X_{k}-\mu_{k \mid \mathcal{F}}\right)\right\}^{-1}\left\{\operatorname{var}\left(X_{k}-\mu_{k \mid \mathcal{F}}\right)-\widehat{\operatorname{var}}\left(X_{k}-\mu_{k \mid \mathcal{F}}\right)\right\}, \\
& I_{3} \stackrel{\text { def }}{=} {\left[\widehat{\operatorname{CCov}}\left\{\left(X_{k}-\mu_{k \mid \mathcal{F}}\right) \mid Y\right\}-\operatorname{Cov}\left\{\left(X_{k}-\mu_{k \mid \mathcal{F}}\right) \mid Y\right\}\right] } \\
& {\left[\left\{\widehat{\operatorname{var}}\left(X_{k}-\mu_{k \mid \mathcal{F}}\right)\right\}^{-1}-\left\{\operatorname{var}\left(X_{k}-\mu_{k \mid \mathcal{F}}\right)\right\}^{-1}\right] } \\
& I_{4} \stackrel{\text { def }}{=} \omega_{k \mid \mathcal{F}}\left\{\operatorname{var}\left(X_{k}-\mu_{k \mid \mathcal{F}}\right)-\widehat{\operatorname{var}}\left(X_{k}-\mu_{k \mid \mathcal{F}}\right)\right\}\left[\left\{\widehat{\operatorname{var}}\left(X_{k}-\mu_{k \mid \mathcal{F}}\right)\right\}^{-1}-\left\{\operatorname{var}\left(X_{k}-\mu_{k \mid \mathcal{F}}\right)\right\}^{-1}\right] .
\end{aligned}
$$

We study $\widehat{\operatorname{CCov}}\left\{\left(X_{k}-\mu_{k \mid \mathcal{F}}\right) \mid Y\right\}-\operatorname{CCov}\left\{\left(X_{k}-\mu_{k \mid \mathcal{F}}\right) \mid Y\right\}$ and $\widehat{\operatorname{Var}}\left(X_{k}-\mu_{k \mid \mathcal{F}}\right)-$ $\operatorname{var}\left(X_{k}-\mu_{k \mid \mathcal{F}}\right)$ respectively.

We first deal with $\widehat{\operatorname{CCov}}\left\{\left(X_{k}-\mu_{k \mid \mathcal{F}}\right) \mid Y\right\}-\operatorname{CCov}\left\{\left(X_{k}-\mu_{k \mid \mathcal{F}}\right) \mid Y\right\}$. It can be written as $L_{1}+L_{2}+L_{3}$, where

$$
\begin{aligned}
L_{1}= & n^{-1} \sum_{j=1}^{n}\left[n^{-1} \sum_{i=1}^{n} \mathbf{1}\left(Y_{i}<Y_{j}\right)\left\{X_{i k}-g_{k \mid \mathcal{F}}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right\}\right]^{2}-\operatorname{CCov}\left\{\left(X_{k}-\mu_{k \mid \mathcal{F}}\right) \mid Y\right\}, \\
L_{2}= & 2 n^{-1} \sum_{j=1}^{n}\left(\left[n^{-1} \sum_{i=1}^{n} \mathbf{1}\left(Y_{i}<Y_{j}\right)\left\{X_{i k}-g_{k \mid \mathcal{F}}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right\}\right]\right. \\
& {\left.\left[n^{-1} \sum_{i=1}^{n} \mathbf{1}\left(Y_{i}<Y_{j}\right)\left\{g_{k \mid \mathcal{F}}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)-g_{k \mid \mathcal{F}}\left(\mathbf{x}_{i \mathcal{F}}, \widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}\right)\right\}\right]\right), } \\
L_{3}= & n^{-1} \sum_{j=1}^{n}\left[n^{-1} \sum_{i=1}^{n} \mathbf{1}\left(Y_{i}<Y_{j}\right)\left\{g_{k \mid \mathcal{F}}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)-g_{k \mid \mathcal{F}}\left(\mathbf{x}_{i \mathcal{F}}, \widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}\right)\right\}\right]^{2} .
\end{aligned}
$$

Thus, for any $\varepsilon_{n}>0, \operatorname{pr}\left[\left|\widehat{\operatorname{CCov}}\left\{\left(X_{k}-\mu_{k \mid \mathcal{F}}\right) \mid Y\right\}-\operatorname{CCov}\left\{\left(X_{k}-\mu_{k \mid \mathcal{F}}\right) \mid Y\right\}\right|>3 \varepsilon_{n}\right] \leq$ $\operatorname{pr}\left(\left|L_{1}\right|>\varepsilon_{n}\right)+\operatorname{pr}\left(\left|L_{2}\right|>\varepsilon_{n}\right)+\operatorname{pr}\left(\left|L_{3}\right|>\varepsilon_{n}\right)$.

We investigate these three probabilities separately. We first evaluate L_{1}. We write $n^{3}\{n(n-1)(n-2)\}^{-1} L_{1}$ as $U_{1, n}-\operatorname{CCov}\left\{\left(X_{k}-\mu_{k \mid \mathcal{F}}\right) \mid Y\right\}+\left\{(n-1) / n^{2}\right\} U_{2, n}$, where

$$
\begin{gather*}
U_{1, n}=\binom{n}{3}^{-1} \sum_{i<l<j} h_{1}\left(X_{i k}, \mathbf{x}_{i \mathcal{F}}, Y_{i} ; X_{l k}, \mathbf{x}_{l \mathcal{F}}, Y_{l} ; X_{j k}, \mathbf{x}_{j \mathcal{F}}, Y_{j}\right), \\
U_{2, n}=\binom{n}{2}^{-1} \sum_{i<j} h_{2}\left(X_{i k}, \mathbf{x}_{i \mathcal{F}}, Y_{i} ; X_{j k}, \mathbf{x}_{j \mathcal{F}}, Y_{j}\right) \\
h_{1}\left(X_{i k}, \mathbf{x}_{i \mathcal{F}}, Y_{i} ; X_{l k}, \mathbf{x}_{l \mathcal{F}}, Y_{l} ; X_{j k}, \mathbf{x}_{j \mathcal{F}}, Y_{j}\right)=\omega_{1}(i, j, l) / 3+\omega_{1}(i, l, j) / 3+\omega_{1}(j, i, l) / 3, \\
\omega_{1}(i, j, l) \stackrel{\text { def }}{=}\left[\mathbf{1}\left(Y_{i}<Y_{j}\right)\left\{X_{i k}-g_{k \mid \mathcal{F}}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right\}\right. \\
\left.+\mathbf{1}\left(Y_{l}<Y_{j}\right)\left\{X_{l k}-g_{k \mid \mathcal{F}}\left(\mathbf{x}_{l \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right\}\right] / 2 \tag{S.2}
\end{gather*}
$$

and $h_{2}\left(X_{i k}, \mathbf{x}_{i \mathcal{F}}, Y_{i} ; X_{j k}, \mathbf{x}_{j \mathcal{F}}, Y_{j}\right)=\left(\left[\mathbf{1}\left(Y_{i}<Y_{j}\right)\left\{X_{i k}-g_{k \mid \mathcal{F}}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right\}\right]^{2}+\left[\mathbf{1}\left(Y_{j}<\right.\right.\right.$ $\left.\left.\left.Y_{i}\right)\left\{X_{j k}-g_{k \mid \mathcal{F}}\left(\mathbf{x}_{j \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right\}\right]^{2}\right) / 2$.

Under $H_{0}, U_{1, n}$ is a degenerate U-statistic. The U-statistic theory for fixed p is systematically introduced in Serfling (1980). Zhong and Chen (2011, Section 3) studied the U-statistic theory for diverging p. They found that Hoeffding decomposition (Hoeffding, 1948) for U-statistic is still valid when p diverges, which plays a crucial role to generalize the U-statistic theory from the fixed p case to the diverging p case. We work with the Hoeffding decomposition (Hoeffding, 1948) which decomposes a U statistic into a summation of i.i.d. random variables plus an asymptotically negligible term, which, together with the Lindeberg-Lévy central limit theorem, helps to derive the asymptotic normality even when $p \rightarrow \infty$. Another relevant work is Portnoy (1986). He showed that the central limit theorem is valid under some mild conditions when the covariate dimension is of order $o\left(n^{1 / 2}\right)$, which is satisfied by Condition (B1). Following similar arguments used in Section 3 in Zhong and Chen (2011), we can obtain that $U_{1, n}-\operatorname{Cov}\left\{\left(X_{k}-\mu_{k \mid \mathcal{F}}\right) \mid Y\right\}=O_{p}\left(n^{-1}\right)$ under H_{0}. Theorem 5.5.1 in Serfling (1980) yields $U_{1, n}-\operatorname{CCov}\left\{\left(X_{k}-\mu_{k \mid \mathcal{F}}\right) \mid Y\right\}=O_{p}\left(n^{-1 / 2}\right)$ under H_{1}.

We turn to $U_{2, n}$. Since $U_{2, n} \xrightarrow{p} E\left\{h_{2}\left(X_{i k}, \mathbf{x}_{i \mathcal{F}}, Y_{i} ; X_{j k}, \mathbf{x}_{j \mathcal{F}}, Y_{j}\right)\right\}<\infty$, we obtain that $U_{2, n} /(n-2)=O_{p}\left(n^{-1}\right)$. Thus, for any $\varepsilon_{n}>0, \operatorname{pr}\left(\left|L_{1}\right|>\varepsilon_{n}\right)$ is not greater than

$$
\begin{equation*}
\operatorname{pr}\left[\left|U_{1, n}-\operatorname{CCov}\left\{\left(X_{k}-\mu_{k \mid \mathcal{F}}\right) \mid Y\right\}\right|>\varepsilon_{n} / 2\right]+\operatorname{pr}\left\{U_{2, n} /(n-2)>\varepsilon_{n} / 2\right\} . \tag{S.3}
\end{equation*}
$$

We evaluate the first term of (S.3). Following Theorem 2 in Zhu et al. (2011), we can similarly prove that for any $\varepsilon_{n}>0$, there exists a sufficiently small constant $s_{1, \varepsilon_{n}} \in\left(0,2 / \varepsilon_{n}\right)$ satisfying $\operatorname{pr}\left[\left|U_{1, n}-\operatorname{Cov}\left\{\left(X_{k}-\mu_{k \mid \mathcal{F}}\right) \mid Y\right\}\right|>\varepsilon_{n}\right] \leq 2 \exp \{n \log (1-$ $\left.\left.\varepsilon_{n} s_{1, \varepsilon_{n}} / 2\right) / 3\right\}$. For the second term of S.3), we have $\operatorname{pr}\left\{U_{2, n} /(n-2)>\varepsilon_{n}\right\}=\operatorname{pr}\left[U_{2, n}-\right.$ $\left.\theta_{k, \mathcal{F}}>\left\{(n-2) \varepsilon_{n}-\theta_{k, \mathcal{F}}\right\}\right]$, where $0<\theta_{k, \mathcal{F}}=E\left\{h_{2}\left(X_{i k}, \mathbf{x}_{i \mathcal{F}}, Y_{i} ; X_{j k}, \mathbf{x}_{j \mathcal{F}}, Y_{j}\right)\right\}<\infty$. Similarly, we can obtain that for any $\varepsilon_{n}>0$, there exists a sufficiently small constant $s_{2, \varepsilon_{n}} \in\left(0,2 / \varepsilon_{n}\right)$ satisfying $\operatorname{pr}\left(U_{2, n}-\theta_{k, \mathcal{F}}>\varepsilon_{n}\right) \leq \exp \left\{n \log \left(1-\varepsilon_{n} s_{2, \varepsilon_{n}} / 2\right) / 2\right\}$. Since for any $\varepsilon_{n}>0$, it holds true that $\left\{(n-2) \varepsilon_{n}-\theta_{k, \mathcal{F}}\right\}>\varepsilon_{n}$ when n is sufficiently large. Thus we conclude that $\operatorname{pr}\left\{U_{2, n} /(n-2)>\varepsilon_{n}\right\} \leq \exp \left\{n \log \left(1-\varepsilon_{n} s_{2, \varepsilon_{n}} / 2\right) / 2\right\}$. Set $s_{\varepsilon_{n}}=\min \left\{s_{1, \varepsilon_{n}}, s_{2, \varepsilon_{n}}\right\}$. It follows that $\operatorname{pr}\left(\left|L_{1}\right|>\varepsilon_{n}\right) \leq 3 \exp \left\{n \log \left(1-\varepsilon_{n} s_{\varepsilon_{n}} / 2\right) / 3\right\}$.

Next we deal with L_{2}. With Taylor's expansion and regularity condition (B3), we have $\operatorname{pr}\left(\left|L_{2}\right|>\varepsilon_{n}\right)<2 \operatorname{pr}\left(\left|L_{21} L_{22} L_{23}\right|>\varepsilon_{n} / 4\right)$ where

$$
\begin{aligned}
L_{21} & =n^{-1} \sum_{j=1}^{n}\left[n^{-1} \sum_{i=1}^{n} \mathbf{1}\left(Y_{i}<Y_{j}\right)\left\{X_{i k}-g_{k \mid \mathcal{F}}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right\}\right] \\
L_{22} & =\left[n^{-1} \sum_{i=1}^{n}\left\{g_{k \mid \mathcal{F}}^{\prime}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right\}^{\mathrm{T}} g_{k \mid \mathcal{F}}^{\prime}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right]^{1 / 2}, \\
L_{23} & =\left[\left(\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}-\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)^{\mathrm{T}}\left(\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}-\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right]^{1 / 2} .
\end{aligned}
$$

As $\operatorname{pr}\left(\left|L_{21} L_{22} L_{23}\right|>\varepsilon_{n}\right)$ is equal to

$$
\begin{aligned}
& \operatorname{pr}\left\{\left|L_{21} L_{22} L_{23}\right|>\varepsilon_{n},\left|L_{21}\right|>\left(2 M_{0}+\varepsilon_{n}\right)\right\}+\operatorname{pr}\left\{\left|L_{21} L_{22} L_{23}\right|>\varepsilon_{n},\left|L_{21}\right| \leq\left(2 M_{0}+\varepsilon_{n}\right)\right\} \\
\leq & \operatorname{pr}\left\{\left|L_{21}\right|>\left(2 M_{0}+\varepsilon_{n}\right)\right\}+\operatorname{pr}\left\{\left|L_{22} L_{23}\right| \geq \varepsilon_{n} /\left(2 M_{0}+\varepsilon_{n}\right)\right\} \\
\leq & \operatorname{pr}\left\{\left|L_{21}\right|>\left(2 M_{0}+\varepsilon_{n}\right)\right\}+\operatorname{pr}\left\{\left|L_{22}\right|>\left(2 M_{n}+\varepsilon_{n}\right)^{1 / 2}\right\} \\
+ & \operatorname{pr}\left[\left|L_{23}\right| \geq \varepsilon_{n} /\left\{\left(2 M_{0}+\varepsilon_{n}\right)\left(2 M_{n}+\varepsilon_{n}\right)^{1 / 2}\right\}\right]
\end{aligned}
$$

where $M_{0} \stackrel{\text { def }}{=} E\left[n^{-2} \sum_{j=1}^{n} \sum_{i=1}^{n} \mathbf{1}\left(Y_{i}<Y_{j}\right)\left\{X_{i k}-g_{k \mid \mathcal{F}}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right\}\right]$, and
$M_{n} \stackrel{\text { def }}{=} E\left[\left\{g_{k \mid \mathcal{F}}^{\prime}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right\}^{\mathrm{T}} g_{k \mid \mathcal{F}}^{\prime}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right]$. Then we have $M_{0}=0$ under H_{0}, $0<\left|M_{0}\right|<\infty$ under H_{1} and $M_{n}=O(s)$, where $s=|\mathcal{F}|$. It follows from Lemma 1 that $\operatorname{pr}\left\{\left|L_{21}\right|>\left(2 M_{0}+\varepsilon_{n}\right) \leq \operatorname{pr}\left\{\left|L_{21}-M_{0}\right|>\varepsilon_{n}\right\} \leq 2 n \exp \left(-c_{1} n \varepsilon_{n}^{2}\right)\right.$, where c_{1} is a positive constant. Similarly pr $\left\{\left|L_{22}\right|>\left(2 M_{n}+\varepsilon_{n}\right)^{1 / 2}\right\} \leq \operatorname{pr}\left\{\left|L_{22}^{2}-M_{n}\right|>\varepsilon_{n}\right\} \leq$ $2 s \exp \left(-c_{2} n s^{-2} \varepsilon_{n}^{2}\right)$, where c_{2} is a positive constant. Lemma 2 yields that $\operatorname{pr}\left(\left|L_{23}\right|>\right.$ $\left.\varepsilon_{n} /\left\{\left(2 M_{0}+\varepsilon_{n}\right)\left(2 M_{n}+\varepsilon_{n}\right)^{1 / 2}\right\}\right) \leq 2 s \exp \left(-c_{3} n s^{-2} \varepsilon_{n}^{2}\right)$. Thus we have $\operatorname{pr}\left(\left|L_{2}\right|>\varepsilon_{n}\right)<$ $4 n \exp \left(-c_{1} n \varepsilon_{n}^{2}\right)+4 s \exp \left(-c_{2} n s^{-2} \varepsilon_{n}^{2}\right)+4 s \exp \left(-c_{3} n s^{-2} \varepsilon_{n}^{2}\right)$.

Next we deal with L_{3}. With Taylor's expansion, it is not difficult to show that $\operatorname{pr}\left(\left|L_{3}\right|>\varepsilon_{n}\right)<2 \operatorname{pr}\left(\left|L_{31} L_{32}\right|>\varepsilon_{n} / 2\right)$ where

$$
\begin{aligned}
& L_{31}=n^{-1} \sum_{i=1}^{n}\left[\left\{g_{k \mid \mathcal{F}}^{\prime}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right\}^{\mathrm{T}} g_{k \mid \mathcal{F}}^{\prime}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right] \\
& L_{32}=\left[\left(\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}-\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)^{\mathrm{T}}\left(\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}-\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right] .
\end{aligned}
$$

As pr $\left\{\left|L_{31} L_{32}\right|>\varepsilon_{n}\right\} \leq \operatorname{pr}\left\{\left|L_{31}\right|>\left(2 M_{n}+\varepsilon_{n}\right)\right\}+\operatorname{pr}\left\{\left|L_{32}\right|>\varepsilon_{n} /\left(2 M_{n}+\varepsilon_{n}\right)\right\}$, by Lemma 1 and Lemma 2, we obtain that pr $\left\{\left|L_{3}\right|>\varepsilon_{n}\right\} \leq 4 s \exp \left(-c_{4} n s^{-2} \varepsilon_{n}^{2}\right)+4 s \exp \left(-c_{5} n s^{-2} \varepsilon_{n}\right)$, where c_{4} and c_{5} are some positive constants.

Next, we evaluate $\left\{\widehat{\operatorname{var}}\left(X_{k}-\mu_{k \mid \mathcal{F}}\right)-\operatorname{var}\left(X_{k}-\mu_{k \mid \mathcal{F}}\right)\right\}$ by writing it into three parts as $M_{1}+M_{2}+M_{3}$, where

$$
\begin{aligned}
& M_{1} \stackrel{\text { def }}{=} n^{-1} \sum_{i=1}^{n}\left\{X_{i k}-g_{k \mid \mathcal{F}}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right\}^{2}-\operatorname{var}\left\{X_{k}-g_{k \mid \mathcal{F}}\left(\mathbf{x}_{\mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right\}, \\
& M_{2} \stackrel{\text { def }}{=} 2 n^{-1} \sum_{i=1}^{n}\left\{X_{i k}-g_{k \mid \mathcal{F}}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right\}\left\{g_{k \mid \mathcal{F}}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)-g_{k \mid \mathcal{F}}\left(\mathbf{x}_{i \mathcal{F}}, \widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}\right)\right\}, \\
& M_{3} \stackrel{\text { def }}{=} n^{-1} \sum_{i=1}^{n}\left\{g_{k \mid \mathcal{F}}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)-g_{k \mid \mathcal{F}}\left(\mathbf{x}_{i \mathcal{F}}, \widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}\right)\right\}^{2} .
\end{aligned}
$$

By Lemma 1, we have $\operatorname{pr}\left(\left|M_{1}\right|>\varepsilon_{n}\right) \leq 2 \exp \left(-c_{6} n \varepsilon_{n}^{2}\right)$. Besides, we have $\operatorname{pr}\left(\left|M_{2}\right|>\right.$
$\left.\varepsilon_{n}\right) \leq 2 \operatorname{pr}\left(\left|M_{21} M_{22}\right|>\varepsilon_{n} / 4\right)$ where

$$
\begin{aligned}
& M_{21}=n^{-1} \sum_{i=1}^{n}\left\{X_{i k}-g_{k \mid \mathcal{F}}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right\}\left[\left\{g_{k \mid \mathcal{F}}^{\prime}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right\}^{\mathrm{T}} g_{k \mid \mathcal{F}}^{\prime}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right]^{1 / 2}, \\
& M_{22}=\left[\left(\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}-\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)^{\mathrm{T}}\left(\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}-\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right]^{1 / 2}
\end{aligned}
$$

Similar to the arguments in evaluating L_{2}, we obtain $\operatorname{pr}\left(\left|M_{21} M_{22}\right|>\varepsilon_{n} / 4\right) \leq 4 s \exp \left(-c_{7} n s^{-2} \varepsilon_{n}^{2}\right)$.
As $\operatorname{pr}\left(\left|M_{3}\right|>\varepsilon_{n}\right) \leq 2 \operatorname{pr}\left(\left|M_{31} M_{32}\right|>\varepsilon_{n} / 2\right)$ where

$$
\begin{aligned}
& M_{31}=n^{-1} \sum_{i=1}^{n}\left[\left\{g_{k \mid \mathcal{F}}^{\prime}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right\}^{\mathrm{T}} g_{k \mid \mathcal{F}}^{\prime}\left(\mathbf{x}_{i \mathcal{F}}, \boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)\right], \\
& M_{32}=\left(\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}-\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right)^{\mathrm{T}}\left(\widehat{\boldsymbol{\beta}}_{k \mid \mathcal{F}}-\boldsymbol{\beta}_{0, k \mid \mathcal{F}}\right) .
\end{aligned}
$$

Using Lemmas 1 and 2 repeatedly, we obtain $\operatorname{pr}\left(\left|M_{3}\right|>\varepsilon_{n}\right) \leq 4 s \exp \left(-c_{8} n s^{-2} \varepsilon_{n}^{2}\right)+$ $4 s \exp \left(-c_{9} n s^{-2} \varepsilon_{n}\right)$, where c_{8}, c_{9} are positive constants.

In summary, for any $\varepsilon_{n}>0$, there exist positive constants $c_{10}, c_{11}, c_{12}, c_{13}$ and $s_{\varepsilon_{n}} \in\left(0,2 / \varepsilon_{n}\right)$ such that $\operatorname{pr}\left\{\left|\widehat{\omega}_{k \mid \mathcal{F}}-\omega_{k \mid \mathcal{F}}\right|>\varepsilon_{n}\right\} \leq O\left[\exp \left\{n \log \left(1-\varepsilon_{n} s_{\varepsilon_{n}} / 2\right) / 3\right\}+\right.$ $\left.\exp \left(-c_{10} n \varepsilon_{n}^{2}\right)+n \exp \left(-c_{11} n \varepsilon_{n}^{2}\right)+s \exp \left(-c_{12} n s^{-2} \varepsilon_{n}^{2}\right)+s \exp \left(-c_{13} n s^{-2} \varepsilon_{n}\right)\right]$.

Given a working index set $\mathcal{F}, \operatorname{pr}\left\{\max _{k \in \mathcal{F}^{c}}\left|\widehat{\omega}_{k \mid \mathcal{F}}-\omega_{k \mid \mathcal{F}}\right|>\varepsilon_{n}\right\} \leq(p-s) \max _{k \in \mathcal{F}^{c}} \operatorname{pr}\left\{\mid \widehat{\omega}_{k \mid \mathcal{F}}-\right.$ $\left.\omega_{k \mid \mathcal{F}} \mid>\varepsilon_{n}\right\}$, which yields that $\operatorname{pr}\left\{\max _{k \in \mathcal{F} c}\left|\widehat{\omega}_{k \mid \mathcal{F}}-\omega_{k \mid \mathcal{F}}\right|>\varepsilon_{n}\right\}$ is not greater than $O[p \exp \{n \log (1-$ $\left.\left.\left.\varepsilon_{n} s_{\varepsilon_{n}} / 2\right) / 3\right\}+p \exp \left(-c_{10} n \varepsilon_{n}^{2}\right)+p n \exp \left(-c_{11} n \varepsilon_{n}^{2}\right)+p s \exp \left(-c_{12} n s^{-2} \varepsilon_{n}^{2}\right)+p s \exp \left(-c_{13} n s^{-2} \varepsilon_{n}\right)\right]$.
This completes the proof of Proposition 1.
Proof of Theorem 1: The first two statements are obvious by noting that $\operatorname{cov}^{2}\{Y, \mathbf{1}(X<\widetilde{X}) \mid \widetilde{X}\} \leq \operatorname{var}(Y \mid \widetilde{X}) \operatorname{var}\{\mathbf{1}(X<\widetilde{X}) \mid \widetilde{X}\}$, and $E\{\operatorname{var}(Y \mid \widetilde{X})\} \leq$ $\operatorname{var}(Y), \operatorname{var}\{\mathbf{1}(X<\widetilde{X}) \mid \widetilde{X}\} \leq 1 / 4$.

Next we prove the third assertion. Without loss of generality, we can assume both X and Y are standard normal. In other words,

$$
\binom{X}{Y} \sim \mathcal{N}\left(\binom{0}{0},\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)\right) .
$$

Let $F(x \mid Y)=\operatorname{pr}(X<x \mid Y)$. We first note that $(X \mid Y) \sim \mathcal{N}\left(\rho Y, 1-\rho^{2}\right)$ and

$$
\begin{aligned}
\frac{\partial F(x \mid Y)}{\partial Y} & =\frac{\partial \operatorname{pr}\left\{\mathcal{N}(0,1)<(x-\rho Y) / \sqrt{1-\rho^{2}} \mid Y\right\}}{\partial Y} \\
& =\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{(x-\rho Y)^{2}}{2\left(1-\rho^{2}\right)}\right\}\left(-\frac{\rho}{\sqrt{1-\rho^{2}}}\right)
\end{aligned}
$$

Lemma 1 yields that
$E\left\{\frac{\partial F(x \mid Y)}{\partial Y}\right\}=-\frac{\rho}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)$ and $E_{\tilde{X}}\left[E_{Y \mid \tilde{X}}\left\{\frac{\partial F(\tilde{X} \mid Y)}{\partial Y}\right\}\right]^{2}=\frac{\rho^{2}}{2 \sqrt{3} \pi}$.
In general, if $\operatorname{var}(X)=\sigma_{X}^{2}, \operatorname{var}(Y)=\sigma_{Y}^{2}$, we can obtain $E_{\widetilde{X}}\left[E_{Y \mid \widetilde{X}}\{\partial F(\widetilde{X} \mid Y) / \partial Y\}\right]^{2}=$ $\rho^{2} /\left(2 \sqrt{3} \pi \sigma_{Y}^{2}\right)$. We further apply Stein (1981)'s lemma to get that $E\{\partial F(x \mid Y) / \partial Y\}=$ $E\{F(x \mid Y) Y\} / \sigma_{Y}^{2}=\operatorname{cov}\{\mathbf{1}(X<x), Y\} / \sigma_{Y}^{2}$, which indeed connects $E_{Y \mid \tilde{X}}\{\partial F(\widetilde{X} \mid$ $Y) / \partial Y\}$ with $\mathrm{CD}(Y \mid X)$. To be precise, $\mathrm{CD}(Y \mid X)=\rho^{2} /(2 \sqrt{3} \pi)$.

It remains to prove the last assertion. Recall that we merely assume that $Y \sim$ $N\left(0, \sigma^{2}\right)$, where $\sigma^{2}=\operatorname{var}(Y)$. With integration by parts, we obtain that

$$
\begin{aligned}
E\{\partial F(x \mid Y) / \partial Y\} & =\int \frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-y^{2} /\left(2 \sigma^{2}\right)\right\} d F(x \mid y) \\
& =E\{F(x \mid Y) Y\} / \sigma^{2}=\operatorname{cov}\{\mathbf{1}(X<x), Y\} / \operatorname{var}(Y)
\end{aligned}
$$

Accordingly, $E\left[E^{2}\{\partial F(\tilde{X} \mid Y) / \partial Y \mid \tilde{X}\}\right]=E[\operatorname{cov}\{\mathbf{1}(X<\tilde{X}), Y \mid \tilde{X}\}]^{2} / \operatorname{var}^{2}(Y)$. This completes the proof of Theorem 1 .

REFERENCES

Hoeffding, W. (1948). "A class of statistics with asymptotically normal distribution." The Annals of Mathematical Statistics, 19, 293-325.

Portnoy, S. (1986). "On the central limit theorem in \mathbb{R}^{p} when $p \rightarrow \infty$." Probability Theory and Related Fields, 73, 571-583.

Serfling, R. L. (1980) Approximation Theorems in Mathematical Statistics. New York: Wiley.

Stein, C. (1981) "Estimation of the mean of a multivariate normal distribution." The Annals of Statistics, 9, 1135-1151.

Zhong, P. S. and Chen, S. X. (2011). "Tests for high-dimensional regression coefficients with factorial designs." Journal of the American Statistical Association, 106, 260-274.

Zhu, L. P., Li, L., Li, R., and Zhu, L. X. (2011). "Model-free feature screening for ultrahigh dimensional data." Journal of the American Statistical Association, 106, 1464-1475.

[^0]: *Liping Zhu is the corresponding author. Email: zhu.liping@ruc.edu.cn. Institute of Statistics and Big Data and Center for Applied Statistics, Renmin University of China, 59 Zhongguancun Avenue, Haidian District, Beijing 100872, P. R. China.

