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Summary: Shrinkage-type variable selection procedures have recently seen increasing applications

in biomedical research. However, their performance can be adversely influenced by outliers in either

the response or the covariate space. This paper proposes a weighted Wilcoxon-type smoothly clipped

absolute deviation (WW-SCAD) method, which deals with robust variable selection and robust

estimation simultaneously. The new procedure can be conveniently implemented with the statistical

software R. We establish that the WW-SCAD correctly identifies the set of zero coefficients with

probability approaching one and estimates the nonzero coefficients with the rate n−1/2. Moreover,

with appropriately chosen weights the WW-SCAD is robust with respect to outliers in both the x

and y directions. The important special case with constant weights yields an oracle-type estimator

with high efficiency at the presence of heavier-tailed random errors. The robustness of the WW-

SCAD is partly justified by its asymptotic performance under local shrinking contamination. We

propose a BIC-type tuning parameter selector for the WW-SCAD. The performance of the WW-

SCAD is demonstrated via simulations and by an application to a study that investigates the effects

of personal characteristics and dietary factors on plasma beta-carotene level.
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1. Introduction

In biomedical research, statisticians often need to analyze data sets with a non-normally

distributed response variable and/or many covariates that potentially contain multiple high

leverage points. This often imposes serious problems for variable selection and the subse-

quent inference. Existing work on robust variable selection are mostly robust best-subset

procedures, such as robust AIC or BIC, see Ronchetti (1985), Hurvich and Tsai (1990),

Burman and Nolan (1995), Ronchetti and Staudte (1994), Ronchetti, Field and Blanchard

(1997), Wisnowski et al. (2003) and Müller and Welsh (2005), among others. The best-

subset type procedures are computationally intensive even for moderately large number of

covariates; and are known to have inherent instability (Brieman, 1996) due to their discrete

nature. Moreover, these approaches in general are only robust against outliers in the response

space but are still sensitive to high-leverage points. This paper introduces a novel unified

framework called the weighted Wilcoxon-type smoothly clipped absolute deviation method

(WW-SCAD, for short) for automatic robust variable selection and robust estimation that

can effectively handle the above concerns.

In Section 4, we analyzed a data set from a study investigating the effects of personal

characteristics and dietary factors on plasma beta-carotene level. It has been observed

that low plasma concentrations of beta-carotene might be associated with increased risk of

developing certain types of cancer. Due to the nature of the study, many patients have rather

low plasma beta-carotene levels. This results in a long-tailed and highly skewed distribution

for the response variable (plasma beta-carotene level, ng/ml), see the histogram depicted

in Figure 1(a). Also, two of the ten covariates: x8 (number of alcoholic drinks consumed

per week) and x9 (cholesterol consumed per day) clearly contain multiple outliers, some are

even quite extreme, as revealed by their boxplots in Figure 1(b). This leads us to propose

a procedure that is robust on both the covariate and response spaces to analyze this data
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set. Some covariates may not have effects on the plasma beta-carotene level. Thus, it is of

great interest to further develop variable selection procedure in robust statistical modeling.

From the analysis in section 4.2, the newly proposed robust variable selection procedure

reduces the median prediction error on the validation data to about 68% of that given by

its nonrobust alternative.

[Figure 1 about here.]

The WW-SCAD procedure is motivated by recent developments in shrinkage-type variable

selection procedures such as LASSO (Tibshirani, 1996) and SCAD (Fan and Li, 2001).

Distinguished from the robust subset-type procedures, the WW-SCAD simultaneously selects

covariates and estimates parameters by minimizing an objective function which is the sum of

the weighted Wilcoxon-type dispersion function and the smoothly clipped absolute deviation

(SCAD) penalty function, see Section 2.2. The penalty term shrinks the estimated small

coefficients to zero, thus serves the purpose of variable selection.

The WW-SCAD is robust against outliers in both the x and y directions with appropriately

chosen weights. This is different from the LAD-LASSO procedure based on the least absolute

deviation regression (Wang, Li and Jiang, 2007) and the penalized composite quantile regres-

sion (Zou and Yuan, 2007), which provide a certain degree of protection against outliers in the

response space but are vulnerable to high leverage points. We provide theoretical justification

for the robustness of the WW-SCAD by studying its performance under shrinking local

contamination. Under the local contamination, we reveal that the WW-SCAD still identifies

zero coefficients with probability approaching one and estimates nonzero coefficients with a

bias bounded in (x, y) when the weights are appropriately chosen.

The WW-SCAD with constant weights leads to an important special case that is closely

related to the classical Wilcoxon inference based on Jaeckel’s (1972) dispersion function with

Wilcoxon scores. In this case, with a proper tuning parameter the resulted estimator possesses
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the oracle property (Fan and Li, 2001) and often significantly improves the efficiency of the

LS-SCAD (least-squared procedure with SCAD penalty) in the presence of heavy-tailed

errors. The tuning parameter in the WW-SCAD controls the model complexity and plays

an important role in the variable selection procedure. In practice, it is desirable to select

the tuning parameter using a data-driven method. We propose a BIC-type tuning parameter

selector and show that with probability tending to one, the WW-SCAD with the BIC-selector

can identify the most parsimonious correct model.

Rank-based statistical procedures have wide applications in biomedical research due to

their robustness and high efficiency; see Jin et al. (2003), Jung and Ying (2003), Mahfoud

and Randles (2005), Rosner, Glynn and Lee (2006a, 2006b), Heller (2007), Datta and Satten

(2008), Wang and Zhao (2008) and the references therein. However, the aforementioned

work mainly focuses on estimation and hypothesis testing. Our proposal therefore extends

rank-based nonparametric analysis to the important area of variable selection.

The rest of the paper is structured as follows. In the next section, we introduce the WW-

SCAD procedure and discuss its implementation via the software package R. In Section 3,

we establish the asymptotic normality and consistency of selection, and provide justification

for robustness by considering the asymptotic distribution under local contamination. Fur-

thermore, we introduce a BIC-type procedure for selecting the tuning parameter. In Section

4, we demonstrate the performance of the WW-SCAD by Monte Carlo studies and apply it

to analyze the plasma beta-carotene level data set. Section 5 summarizes the paper.

2. Weighted Wilcoxon-type Smoothly Clipped Absolute Deviation Method

Consider a linear regression model

Y = α1n + Xβ + ε,
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where Y = (Y1, . . . , Yn)′ is an n×1 vector of responses, α is the intercept, 1n is an n×1 vector

of ones, X is an n× d matrix of covariates which without loss of generality is assumed to be

centered, β is a d×1 vector of unknown parameters, and ε is an n×1 vector of independent,

identically distributed random errors with probability density function f(·). We assume that

some components of β are zero in the true model. The goal of our work is to identify the

zero coefficients consistently and robustly, and to estimate the nonzero coefficients efficiently

and robustly.

2.1 The WW-SCAD

The penalized weighted Wilcoxon method estimates β by minimizing

n−1
∑
i<j

bij|ei − ej|+ n

d∑
j=1

pλ(|βj|),

where the bij’s are positive and symmetric weights, ei = Yi − x′iβ with xi being the ith row

of X, pλ(·) is a penalty function and λ is a tuning parameter controlling the complexity of

the model. In Section 3.4, we propose a data-driven method to select λ. In our asymptotic

analysis, we write λ as λn to emphasize its dependence on the sample size n.

Directly minimizing n−2
∑

i<j bij|ei − ej|, a weighted version of Gini’s mean difference

measure of variability, yields the generalized rank estimator (GR estimator), see Sievers

(1983), Naranjo and Hettmansperger (1994), Chang, McKean, Naranjo, and Sheather (1999),

Terpstra, McKean and Naranjo (2001), among others. When bij are constant, minimizing

n−2
∑

i<j bij|ei − ej| is equivalent to minimizing Jaeckel’s (1972) Wilcoxon-type dispersion

function
√

12
∑n

i=1

[
R(Yi−x′iβ)

n+1
− 1

2

]
(Yi−x′iβ), where R(Yi−x′iβ) denotes the rank of Yi−x′iβ

among Y1 − x′1β, . . . , Yn − x′nβ.

Fan and Li (2001) provided deep insights into the principles of choosing an appropriate

penalty function. They proposed the smoothly clipped absolute deviation (SCAD) penalty
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function, which satisfies pλ(0) = 0 and has the first-order derivative

p′λ(θ) = λ

{
I(θ ≤ λ) +

(aλ− θ)+

(a− 1)λ
I(θ > λ)

}
(1)

for some a > 2 and θ > 0. Following Fan and Li (2001), we will use a = 3.7 throughout

this paper. Recently, Zou and Li (2007) proposed a local linear approximation to the SCAD

penalty, which retains the same asymptotic properties and at the same time significantly

improves the computational efficiency of Fan and Li’s LS-SCAD. Adopting this idea, we

propose a WW-SCAD procedure for robust simultaneous variable selection and estimation.

Formally, the WW-SCAD method estimates β by minimizing

n−1
∑
i<j

bij|ei − ej|+ n

d∑
j=1

p′λ(|β0
j |)|βj|, (2)

where p′λ(·) is defined in (1),
∑d

j=1 p′λ(|β0
j |)|βj| is the linearized SCAD penalty (Zou and Li,

2007) and β0 is an initial estimator, which we set to be the unpenalized weighted Wilcoxon

estimator. Unlike the objective function for the LS-SCAD, the objective function defined in

(2) is convex in β.

We complete this subsection with a brief discussion of estimating the intercept parameter

α. Since (2) is invariant to a location change, α cannot be estimated simultaneously with β.

Instead, α is estimated based on ei(β̂) = Yi − x′iβ̂, i = 1, . . . , n. A common practice is to

estimate α by the median of the ei(β̂)’s, see for example Section 3.5.2 of Hettmansperger

and McKean (1998).

2.2 Computation

An appealing feature of the WW-SCAD is that its computation can be conveniently carried

out using the statistical software R. Our algorithm is similar to that of the LAD-LASSO

(Wang, Li and Jiang, 2007). The key observation is that minimizing (2) can be achieved by

fitting an L1 regression model based on the pseudo observations (x∗k, Y
∗
k ), k = 1, . . . , n(n−1)

2
+

d. The first n(n − 1)/2 pseudo observations correspond to (bij(xj − xi), bij(Yj − Yi)), for
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1 ≤ i < j ≤ n, and the last d pseudo observations correspond to (p′λ(|β0
j |)ψj, 0), where ψj is

the d-dimensional vector with the jth component being one and all other components being

zeros.

The unpenalized weighted Wilcoxon estimator β0
j can obtained using the function wwfit in

the R software developed by Terpstra and McKean (2005) for rank regression (downloadable

from http://www.stat.wmich.edu/mckean/HMC/Rcode). And the L1 regression model can

be fitted using the R package quantreg by Roger Koenker for quantile regression.

Remark. It is worth emphasizing that in order to achieve practical robustness it is not

sufficient to merely have a robust objective function. The algorithm itself is also of crit-

ical importance. For shrinkage-type procedures, special algorithms are often used for the

implementation and most of these algorithms are sensitive to outlier contamination. As an

example, if we approximate the WW-SCAD objective function quadratically and then apply

the LARS algorithm (Efron et al., 2004), the resulting procedure is likely to be still sensitive

to outliers.

3. Asymptotic Properties

3.1 Notations and assumptions

We consider Mallows-type weights bij that possibly depend on the covariates in the form

bij = b(xi,xj). In the simulations and data analysis, we adopt the GR weights (Chang, et

al., 1999, Terpstra and McKean, 2005): bij = h(xi)h(xj), where

h(xi) = min

{
1,

b

(xi − µ̂)′S−1(xi − µ̂)

}
,

with (µ̂, S) being the robust minimum volume ellipsoid (MVE) estimator of the location and

scatter (Rousseeuw and van Zomeren, 1990), and b being the 95th percentile of χ2(d).

Following the notations in Naranjo and Hettmansperger (1994), let W be an n×n matrix
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of elements wij, where

wij =




−n−1bij, i 6= j

n−1
∑

k 6=i bik, i = j.

Assume n−1X′WX
p→ C, n−1X′W2X

p→ V and n−1X′X
p→ Σ, where C, V and Σ are

positive definite matrices:

C =
1

2

∫∫
(x2 − x1)(x2 − x1)

′b(x1,x2)dM(x2)dM(x1),

V =

∫
{(x2 − x1)b(x2,x1)dM(x2)} {(x2 − x1)b(x2,x1)dM(x2)}′ dM(x1),

Σ =
1

2

∫∫
(x2 − x1)(x2 − x1)

′dM(x2)dM(x1),

and M(x) denotes the cumulative distribution function of x.

We denote the true value of β by β0 = (β10, . . . , βd0)
′ = (β′10, β

′
20)

′. Without loss of

generality, we assume that β20 = 0 and that the elements of β10 are all nonzero. We also

assume the dimension of β10 is s (1 ≤ s ≤ d). Let X1 be the first s columns of X that

correspond to β10, and write

C =




C11 C12

C21 C22


 , V =




V11 V12

V21 V22


 and Σ =




Σ11 Σ12

Σ21 Σ22


 .

In addition to the above, we assume that the error density function f(·) is absolutely

continuous with finite Fisher information, i.e.,
∫ {f(x)}−1f ′(x)2dx < ∞. And X and WX

both satisfy Huber’s condition, a sufficient and necessary condition for the least-squares

estimator to have an asymptotic normal distribution; see condition (D.2) of Hettmansperger

and McKean (1998). Under these conditions, the unpenalized WW estimator is
√

n-consistent

for β0 and asymptotically normal.

3.2 Asymptotic properties of the WW-SCAD

Theorem 1 below presents the asymptotic property of the WW-SCAD as a simultaneous

model selection and parameter estimation tool, and its proof is given in the Web Appendix.
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Theorem 1: Assume the regularity conditions in Section 3.1. If λn → 0 and
√

nλn →∞

as n →∞, then the WW-SCAD estimator β̂ = (β̂
′
10, β̂

′
20)

′ must satisfy that P (β̂20 = 0) = 1,

and

√
n(β̂10 − β10) → Ns(0, τ 2C−1

11 V11C
−1
11 ),

where τ = [
√

12
∫

f 2(u)du]−1.

The case with constant weight bij ≡ 1 is particularly important due to its simplicity and

its close connection with the familiar Wilcoxon inference. In this case, we have C11 = V11 =

Σ11 = X′
1X1, thus we have the following corollary.

Corollary 1: Assume the conditions in Theorem 3.1, then when bij ≡ 1, β̂ satisfies:

P (β̂20 = 0) = 1 and
√

n(β̂10 − β10) → Ns(0, τ 2Σ−1
11 ).

Corollary 1 suggests that the Wilcoxon-SCAD, with bij ≡ 1 and a properly chosen tuning

parameter, possesses the oracle property (Fan and Li, 2001). That is, with probability

approach one, the WW-SCAD can correctly identify the nonzero coefficients, and estimate

them as efficiently as the unpenalized WW rank regression does as if the true model were

known in advance. Moreover, the WW-SCAD can be more efficient than the LS-SCAD for

estimating β10 in the presence of heavier-tailed errors. It is easy to show that the asymptotic

relative efficiency is ARE = 12σ2
[∫

f 2(u)du
]2

.

Remark 1. This asymptotic relative efficiency is the same as that of the one-sample Wilcoxon

test with respect to the t-test. It is well known in the literature of rank analysis that the

ARE is as high as 0.955 for normal error distribution, and can be significantly higher than

1 for many heavier-tailed distributions. For instance, ARE = 1.5 for the double exponential

distribution, and ARE = 1.9 for the t distribution with 3 degrees of freedom. For symmetric

error distributions with finite Fisher information, this asymptotic relative efficiency is known

to have a lower bound equal to 0.864.
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Remark 2. The asymptotic covariance matrix of β̂10 in Corollary 1 can be shown to be equiv-

alent to that in Theorem 2.1 of Zou and Yuan (2007) for composite quantile regression when

K, the number of quantiles, goes to infinity. The composite quantile regression, however, is

more computationally involved. Its objective function involves a mixture of quantile objective

functions at different quantiles (the suggested value of K for practical use is 19). As a

result, besides the regression parameters one also needs to estimate K additional parameters

corresponding to K different quantiles of the error distribution.

With nonconstant weights bij, the WW-SCAD still consistently selects the correct model;

however the asymptotic covariance matrix of
√

n(β̂10 − β10) is slightly different from what

one would obtain if the true model were known in advance. This can be seen by observing

that in C11 = X′
1WX1 (and similarly V11), the matrix W involves all d covariates; while if

the true model were known then W would only use s covariates. Indeed, for the WW-SCAD

to work as a model selection criterion, it is necessary to allow the weights to depend on all

candidate covariates.

3.3 Asymptotics under local shrinking contamination

Now we study the robustness property of the WW-SCAD. For robust estimation and hy-

pothesis testing, the influence function approach offers a convenient and essential way to

investigate the local robustness (Hampel, 1974, Hampel et al., 1986). This approach, however,

is not adequate in the current setting as we perform variable selection and parameter

estimation simultaneously.

Following the spirit of influence function approach, we directly study the performance of

the WW-SCAD under infinitesimal contamination. Specifically, we consider the following

local shrinking contamination as in Heritier and Ronchetti (1994):

H∗
n(x, y) =

(
1− δ√

n

)
H(x, y) +

δ√
n

∆(x∗,y∗), (3)
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where H(x, y) is the joint cumulative distribution function of the underlying distribution

without contamination, ∆(x∗,y∗) represents the point mass at (x∗, y∗) and δ is a constant.

Theorem 2: Assume the regularity conditions in Section 3.1. If λn → 0 and
√

nλn →

∞ as n → ∞, then under local shrinking contamination (3), the WW-SCAD estimator

β̂ = (β̂
′
10, β̂

′
20)

′ must satisfy that P (β̂20 = 0) = 1, and

√
n(β̂10 − β10) → Ns(η, τ 2C−1

11 V11C
−1
11 ),

where η = δ[2F (y∗ − x∗β0)− 1]
∫

b(x∗,x)(x∗ − x)dM(x).

The proof of Theorem 2 is given in the Web Appendix. Theorem 2 indicates that under

the local contamination (3), the WW-SCAD can still correctly identifies the set of zero

coefficients with probability tending to one; but the contamination introduces a bias η in

estimating the nonzero coefficients. Note that [2F (y∗−x∗β0)−1]
∫

b(x∗,x)(x∗−x)dM(x) is

also the core part of the influence function of the unpenalized weighted Wilcoxon estimator.

The bias η is bounded in y∗. With proper choice of weights bij, such as the GR weights

introduced in Section 3.1, η is also bounded in x∗ (Naranjo and Hettmansperger, 1994,

Chang, et al. 1999).

3.4 Data-driven tuning parameter selection

The tuning parameter λ controls the model complexity and plays a critical role in the WW-

SCAD procedure. It is desirable to select λ automatically by a data-driven method. Here we

propose to select λ for the WW-SCAD by minimizing

BICλ = log

(
n−2

∑
i<j

bij|(Yi − x′iβ̂λ)− (Yj − x′jβ̂λ)|
)

+ dfλlog(n)/n (4)

over an interval [0, λmax], where β̂λ is the WW-SCAD estimator with tuning parameter λ,

and dfλ is the number of nonzero components in β̂λ. It is assumed that λmax → 0 as n →∞.

We refer to this approach as the BIC-selector, and denote the selected λ by λ̂BIC . It is
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worth noting that the BIC-selector is different from the traditional BIC best subset variable

selection procedure.

To introduce the property of the BIC tuning parameter selector, we next define some

notations. We use S = {j1, . . . , jd∗}, the set of the indices of the covariates in the model, to

denote a given candidate model. Let ST denote the true model, let SF denote the full model,

and let Sλ denote the set of the indices of the covariates selected by WW-SCAD with tuning

parameter λ.

For a given candidate model S, let βS be the vector of parameters. The i-th coordinate of

βS is set to be zero if i /∈ S. Further, define LS
n = n−2

∑
i<j bij|(Yi − x′iβ̂S) − (Yj − x′jβ̂S)|,

where β̂s is the unpenalized weighted Wilcoxon estimator for model S. To demonstrate that

the BIC-selector can identify the true model consistently, we assume

(1) for any S ⊂ SF , LS
n

p→ LS for some LS > 0, where
p→ means converges in probability;

(2) for any S 6⊃ ST , we have LS > LST .

Note that LS
n is the objective function to obtain the weighted Wilcoxon estimator when

model S is used. Conditions (1) and (2) are standard for investigating parameter estimation

under model misspecification, see White (1981). Let R(β) = 0.5
∫∫

b(x1,x2)|(y1 − x′1β) −

(y2 − x′2β)|dH(x1, y1)dH(x2, y2). Then for the true model ST , LST = R(β0) where β0 is

the true parameter and minimizes R(β) under the full model; and for a general model S,

LS = R(β0s) where β0s minimizes R(β) under model S.

Theorem 3: Assume the conditions above and the regularity conditions in Section 3.1,

then P (Sλ̂BIC
= ST ) → 1.

The proof of Theorem 3 is given in the Web Appendix. Theorem 3 indicates that λ̂BIC

leads to a WW-SCAD estimator which consistently yields the true model. The verification of
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this theorem is similar to that in Wang, Li and Tsai (2007), in which the authors proposed

a novel BIC-selector for the SCAD penalized least squares procedures.

4. Numerical Examples

4.1 Simulation study

In the literature, the LS-SCAD has been compared with the nonnegative garrote (Breiman,

1995), the LASSO, and the best subset variable selection procedures such as AIC or BIC,

see for example, Fan and Li (2001) and Zou and Li (2007). Our simulations are designed

to demonstrate the robustness and the efficiency of the WW-SCAD, compared with the

LS-SCAD which is computed with the BIC tuning parameter selector of Wang, Li and Tsai

(2007). We also compare with the benchmark oracle procedure, which sets the estimate of

zero coefficients to be zero and estimates the nonzero coefficients by excluding the covariates

of zero coefficients.

We focus on examining the performance of the WW-SCAD in terms of model complexity

and model errors (ME) defined by

ME(β̂) = (β̂ − β0)
′E(x1x

′
1)(β̂ − β0). (5)

Example 1. As in Tibshirani (1996) and Fan and Li (2001), data are generated from

Yi = x′iβ + εi, i = 1, . . . , 100, (6)

where β = (3, 1.5, 0, 0, 2, 0, 0, 0) and xi = (x1, . . . , x8)
′ ∼ N8(0, Ω), in which the (i, j)th

element of Ω equals 0.5|i−j| for 1 ≤ i, j ≤ 8. We consider three different error distribu-

tions: the standard normal distribution, the t distribution with 3 degrees of freedom, and

a contaminated standard normal distribution with 10% outliers from the standard Cauchy

distribution. For each case, we conduct 500 simulations.

Simulation results are summarized in Table 1, in which we report the average number of

correct 0’s (the average number of the five true zero coefficients that are correctly estimated
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to be zero) and the average number of incorrect 0’s (the average number of the three true

zero coefficients that are incorrectly estimated to be zero). We also report the proportion

of correctly fitted models. To evaluate the lack-of-fit of the selected model, we report the

relative model error RME=ME/MEWilFull, where MEWilFull is the ME for fitting the full

model with unpenalized Wilcoxon rank regression.

[Table 1 about here.]

¿From Table 1, we can see that the median of the RME of the WW-SCAD is close to that

of the WWoracle, the weighted Wilcoxon estimator from the oracle procedure. In terms of

model error, the performance of the WW-SCAD is similar to the LS-SCAD for normal error,

but much better than the LS-SCAD for both t3 error and contaminated normal error in

terms of model error. And the WW-SCAD gives significantly higher percentage of correctly

fitted 0’s compared to the LS-SCAD.

Example 2. We now investigate the effect of outliers in the x direction on model selection.

For this purpose, we consider the same regression model (6) with the standard normal random

errors. We consider a contamination of the covariate x by replacing a random 5% of x with

x + e, where e = (e1, . . . , e8)
′, with e3 having a N(0, 5) distribution and all the other ei’s

having independent N(0, 1) distributions. For the WW-SCAD procedure, we consider both

the Wilcoxon weights and the GR weights.

In this example, the relative model error is defined as RME=ME/MEGRFull, where MEGRFull

is the model error obtained by fitting the full model with the unpenalized weighted Wilcoxon

procedure and the GR weights. We use the weighted Wilcoxon procedure with the GR weights

under the true mode as the benchmark here. The simulation results are summarized in Table

2, from which we observe that the GR weights lead to model selection procedures robust to

outliers in the x direction; in contrast the performance of the LS-SCAD is adversely affected.
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We also note that the WW-SCAD with the Wilcoxon weights is not as seriously affected as

the LS-SCAD but does not perform as well as the WW-SCAD with the GR weights.

[Table 2 about here.]

4.2 Analysis of plasma beta-carotene level data

Observational studies have suggested that low plasma concentration of beta-carotene might

be associated with increased risk of developing certain types of cancer. We consider a data set

from a cross-sectional study that consists of 273 female patients who had an elective surgical

procedure during a three-year period to biopsy or remove a lesion of the lung, colon, breast,

skin, ovary or uterus that was found to be non-cancerous (Nierenberg et al., 1989). The

response variable y is the plasma beta-carotene level (ng/ml) and there are ten covariates:

x1 is age, x2 is smoking status (1=never, 2=former smoker, 3=current smoker), x3 is quetelet

(weight/height2), x4 denotes vitamin use (1=yes, fairly often, 2=yes, not often, 3=no), x5 is

the number of calories consumed per day, x6 is grams of fat consumed per day, x7 is grams of

fiber consumed per day, x8 is number of alcoholic drinks consumed per week, x9 is cholesterol

consumed (mg per day) and x10 is dietary beta-carotene consumed (mcg per day).

As revealed by Figure 1, the distribution of y is highly skewed, while x8 and x9 contain

some obvious outliers. One may suggest log transform the response variable. However,

our preliminary analysis indicates that the log transformed y is still nonnormal. And it

becomes even harder to find an appropriate transformation for x8, which is on ordinal scale.

Since the transformation may not remove the outliers and often brings additional issues for

interpretability, we choose to analyze the variables on their original scale.

We use the first 200 observations as a training data set to select and fit the model, and

use the rest as a validation data set to evaluate the prediction ability (measured by the

median absolute prediction error) of the selected model. The λ values selected by the BIC

criterion are 1.249, 2.834 and 3.028 for the LS-SCAD, the WW-SCAD with the Wilcoxon
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score, and the WW-SCAD with the GR score, respectively. The resulting estimated models

are displayed in Table 3. The LS-SCAD does not exclude any of the ten candidate covariates

from the selected model. The WW-SCAD with either the Wilcoxon score or the GR score fits

a much more succinct model that includes x5 and x10, and suggests that increased plasma

beta-carotene level is associated with increased dietary intake of beta-carotene and reduced

number of calories consumed per day. The WW-SCAD with the Wilcoxon score also includes

x9.

In terms of the prediction performance on the validation data, the WW-SCAD with either

the Wilcoxon score or the GR score yields a much smaller median absolute prediction error.

The median absolute prediction error of the WW-SCAD with the GR score is only 68% of

that given by the LS-SCAD.

[Table 3 about here.]

5. Summary

We propose a novel robust framework called WW-SCAD for simultaneous variable selection

and parameter estimation. This new procedure can be conveniently implemented using the

statistical software R. It is much less computationally intensive compared with the best

subset type procedures. With appropriately chosen weights, the WW-SCAD procedure can

effectively handle outliers in both the x and y directions. Moreover, it loses very little

efficiency with normal data and can be much more efficient than the LS-SCAD at the presence

of heavier-tailed random errors. Although we have focused on studying the SCAD penalty,

without any difficulty our method can be extended with other penalty functions.
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Histogram of plasma beta−carotene level
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Figure 1: Plasma beta-carotene level data: (a) histogram of y, (b) boxplots of x8 (number
of alcoholic drinks consumed per week) and x9 (cholesterol consumed per day)
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Table 1: The simulation results are based on 500 runs. C is the average number of correct
zeros; IC is the average number of incorrect zeros; Correct Fit (%) is the proportion of times
the correct model is selected; and MRME is the median of relative model error.

Error No. of Zeros Correct MRME
Distribution Method C IC Fit (%) (%)

normal WW-SCAD 4.42 0 68.5 43.8
LS-SCAD 4.32 0 60.0 40.6
WWOracle 5 0 100 39.8

t3 WW-SCAD 4.46 0 73.0 40.5
LS-SCAD 4.33 0 63.5 64.6
WWOracle 5 0 100 35.9

contaminated WW-SCAD 4.48 0 67.5 40.6
normal LS-SCAD 4.10 0 49.5 92.7

WWOracle 5 0 100 37.0
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Table 2: The simulation results are based on 500 runs. C is the average number of correct
zeros; IC is the average number of incorrect zeros; Correct Fit (%) is the proportion of times
the correct model is selected; and MRME is the median of relative model error.

No. of Zeros Correct MRME
Method C IC Fit (%) (%)

WW-SCAD (GR) 4.58 0 78.0 39.4
WW-SCAD (Wil) 4.51 0 73.0 44.4
LS-SCAD 3.61 0 39.5 100.3
WWOracle (GR) 5 0 100 37.0
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Table 3: Analysis of plasma beta-carotene level data. Note: The median absolute prediction
error is calculated from the validation data set: median APE=median {|yi−ŷi|, i = 1, . . . , 73},
where yi is the ith response in the validation data set and ŷi is the prediction of response at
xi using the model chosen and fitted by the training data set.

LSSCAD WWSCAD WWSCAD

(Wil) (GR)

age 2.489
smoking status 2.561
quetelet -1.127
vitamin use -22.804
calories 0.070 -0.009 -0.008
fat -1.232
fiber 4.960
alcohol 10.353
cholesterol -0.110 -0.015
dietary beta-carotene 0.026 0.021 0.022

median APE 97.902 66.742 66.609


