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This paper is concerned with test of significance on high-dimensional co-
variance structures, and aims to develop a unified framework for testing com-
monly used linear covariance structures. We first construct a consistent esti-
mator for parameters involved in the linear covariance structure, and then de-
velop two tests for the linear covariance structures based on entropy loss and
quadratic loss used for covariance matrix estimation. To study the asymptotic
properties of the proposed tests, we study related high-dimensional random
matrix theory, and establish several highly useful asymptotic results. With the
aid of these asymptotic results, we derive the limiting distributions of these
two tests under the null and alternative hypotheses. We further show that the
quadratic loss based test is asymptotically unbiased. We conduct Monte Carlo
simulation study to examine the finite sample performance of the two tests.
Our simulation results show that the limiting null distributions approximate
their null distributions quite well, and the corresponding asymptotic critical
values keep Type I error rate very well. Our numerical comparison implies
that the proposed tests outperform existing ones in terms of controlling Type I
error rate and power. Our simulation indicates that the test based on quadratic
loss seems to have better power than the test based on entropy loss.

1. Introduction. High-dimensional data analysis has become increasingly
important in various research fields. Fan and Li (2006) gave a brief review of
regularization methods to deal with several challenges in high-dimensional data
analysis. Bai and Saranadasa (1996) demonstrated the impact of dimensionality
for test of two-sample high-dimensional normal means. This paper aims to develop
powerful tests for high-dimensional covariance structure without the normality as-
sumption.

Received March 2018; revised August 2018.
1Supported by National Natural Science Foundation of China (NNSFC) Grant 11522105.
2Chen is the corresponding author, and supported by NNSFC Grants 11690014 and 11690015, and

partly supported by the Open Research Fund of Key Laboratory of Advanced Theory and Application
in Statistics and Data Science, Ministry of Education.

3Supported by NNSFC Grants 11471223, 11071022 and 11231010.
4Supported by NSF Grants DMS-1512422 and DMS-1820702, and NIH Grants P50 DA039838

and U19AI089672.
MSC2010 subject classifications. Primary 62H15; secondary 62H10.
Key words and phrases. Covariance matrix structure, random matrix theory, test of compound

symmetric structure, test of banded structure, test of sphericity.

3300

http://www.imstat.org/aos/
https://doi.org/10.1214/18-AOS1779
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


TEST OF HD COVARIANCE STRUCTURE 3301

Test of covariance structure is of great importance in multivariate data analy-
sis. Under normality assumption, various tests for covariance matrix have been
developed in the classical multivariate analysis (see, e.g., Anderson (2003)). How-
ever, these tests become invalid when the dimension p of data is large relative
to the sample size n (see Ledoit and Wolf (2002)). Alternatives to the classical
tests of covariance structure have been developed in the literature (see Birke and
Dette (2005), Srivastava (2005), Srivastava and Reid (2012)). Several authors have
studied testing whether a covariance matrix equals the identity matrix. Johnstone
(2001) derived the Tracy–Wisdom law of the largest eigenvalue of the sample co-
variance matrix for normal distribution with covariance matrix being the identity
matrix and p/n → y ∈ (0,1). Without normality assumption, Bai et al. (2009)
proposed correcting the LRT for testing whether the covariance matrix equals a
known one (or equivalently testing whether the covariance matrix equals the iden-
tity matrix), and derived the limiting null distribution when p/n → y ∈ (0,1) by
using results from modern random matrix theory (RMT) (see Bai and Silverstein
(2004), Zheng (2012)). Wang et al. (2013) redefined the LRT when y ∈ (0,1).
Wang (2014) further investigated the asymptotic power of the LRT. Jiang, Jiang
and Yang (2012) studied a corrected LRT when y ∈ (0,1]. They discussed the
LRT for the case y = 1 and showed that the performance of the corrected LRT
when y = 1 is quite different from that when y ∈ (0,1). Cai and Ma (2013) tested
the covariance matrix being a given matrix from a minimax point of view and
allowed p/n → ∞.

Sphericity testing is another important problem under high-dimensional set-
tings. When p,n → ∞, Chen, Zhang and Zhong (2010) studied testing sphericity
for high-dimensional covariance matrices. Wang and Yao (2013) also studied test-
ing sphericity for large-dimensional data. Under the normality assumption, Jiang
and Yang (2013) obtained the limiting null distributions of LRTs for test of spheric-
ity, test of independence, the equality test of covariance matrices, and the identity
test of covariance matrix using moment generating function technique, under the
assumption that p < n and p/n → y ∈ (0,1]. Jiang and Qi (2015) further obtained
the limiting null distributions of test statistics studied in Jiang and Yang (2013) un-
der the normality assumption and p < n − c for some 0 ≤ c ≤ 4. As an extension
of test of sphericity, testing banded structure of covariance matrices has been con-
sidered. Cai and Jiang (2011) tested banded structure of covariance matrices by
limiting law of coherence of random matrices. This test enjoys high power for
sparse alternatives if logp = o(n1/3). Qiu and Chen (2012) studied testing banded
structures based on U-statistics under the assumption p/n → y ∈ (0,∞).

This paper intends to develop a unified framework for testing linear covariance
structures when p/n → y ∈ (0,∞) and without the normality assumption. Not
only several commonly used structures such as test of sphericity, compound sym-
metric structure and banded structure are included, but also many more structures
can be covered by selecting the proper basis matrices. To begin with, we propose
estimating the parameters involved in the linear covariance structure by the squared
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loss; then develop two tests for these covariance structures based on the entropy
loss and quadratic loss used for covariance matrix estimation in the classical mul-
tivariate analysis (see Muirhead (1982)). We demonstrate that many existing tests
for specific covariance structures are special cases of the newly proposed tests. Fur-
thermore, to establish the asymptotic theory of the proposed tests, we first study
asymptotic properties of some useful functionals of high-dimensional sample co-
variance matrix. We further prove that these functionals converge in probability,
and their joint distribution weakly converges to a bivariate normal distribution.
These asymptotic results are of their own significance in spectral analysis of RMT.
Finally, using these asymptotic results, we derive the limiting distributions of the
two proposed tests under both null and alternative hypotheses, and the power func-
tions of these two tests. We further show that the test based on quadratic loss is
asymptotically unbiased in the sense that the power under the alternative hypothe-
sis is always greater than the significance level.

We conduct Monte Carlo simulation study to examine the finite sample perfor-
mance of the two tests. Our simulation results show that the limiting null distri-
butions of the proposed tests approximate their null distributions quite well, and
the corresponding asymptotic critical values keep Type I error rate very well. Our
numerical comparison implies that the proposed tests outperform existing ones in
terms of controlling Type I error rate and power. Our simulation indicates that the
test based on quadratic loss seems to have higher power than the test based on
entropy loss.

The rest of this paper is organized as follows. In Section 2, we propose an esti-
mation procedure for parameters involved in the linear covariance matrix structure,
and develop two tests for linear structure. We further derive the asymptotic distri-
butions of these two tests under the null and alternative hypotheses. In Section 3,
we conduct Monte Carlo simulation to compare the finite sample performance of
the proposed tests with existing ones. Theoretical proofs and technical lemmas are
given in Section 4.

2. Tests on linear structures of covariance matrices. Suppose that {x1,x2,

. . . ,xn} is an independent and identically distributed random sample from
a p-dimensional population x with mean E(x) = μ, and covariance matrix
Cov(x) = �. Following the commonly adopted assumptions in the literature of
RMT (see Bai and Silverstein (2004)), we impose the following two assumptions.

ASSUMPTION A. Assume that the p-dimensional population x satisfies the
independent component structure that can be represented as x = μ+�1/2w, where
w = (w1, . . . ,wp)T , and w1, . . . ,wp are independent and identically distributed
and E(wj ) = 0, E(w2

j ) = 1 and E(w4
j ) = κ < ∞, for 1 ≤ j ≤ p.

ASSUMPTION B. Denote by yn−1 = p/(n − 1). Assume that yn−1 → y ∈
(0,∞).
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Assumption A relaxes the normality assumption by imposing the moment con-
ditions. This assumption is often used in random matrix theories. Regarding to the
representation in Assumption A, it is natural to assume that wj is standardized so
that E(wj ) = 0 and E(w2

j ) = 1. If wj is with finite kurtosis, then Assumption A is
satisfied. Of course, multivariate normal distribution satisfies Assumption A. Many
other distributions may also satisfy Assumption A.

Assumption B allows that p diverges as n grows to infinity. This assumption
implies that we are interested in studying the asymptotic behaviors of test proce-
dures under the statistical settings in which both the dimension p and the sample
size n are allowed to tend to infinity. Assumption B allows that p may be less
than or greater than the sample size. Hereafter, we omit the subscript n in pn for
simplicity. Denote by x and Sn the sample mean and sample covariance matrix,
respectively. That is,

(2.1) x = n−1
n∑

i=1

xi , Sn = (n − 1)−1
n∑

i=1

(xi − x)(xi − x)T .

2.1. Estimation. Linear structure for covariance matrix � means that � can
be represented as a linear combination of prespecified symmetric p × p matrices
(A1, . . . ,AK) with fixed and finite K . That is,

(2.2) � = θ1A1 + θ2A2 + · · · + θKAK,

where {θj , j = 1, . . . ,K} are unknown parameters. Here, A1, . . . ,AK are a set
of basis matrices, and they are assumed to be linearly independent. For example,
Anderson (1973) provided various covariance matrices with different linear struc-
tures. In particular, the author showed that the covariance for x = ∑K

k=1 Ukζ k + e
satisfies the linear covariance structure, where ζ k ∼ N(0, θkIp), e ∼ N(0, θ0Ip),
ζ1, . . . , ζK, e are independent and Ip is the identity matrix. Several other useful
linear covariance structures are given in Section 2.4.

Under normality assumption, the parameter θ = (θ1, . . . , θK)T can be estimated
by the maximum likelihood estimate. The theoretical property and related com-
putational issue have been studied in Anderson (1973) and Zwiernik, Uhler and
Richards (2017) when p is fixed and finite. Without assuming a specific distribu-
tion on W such as the normality of W, we propose estimating θ by minimizing the
following squared loss function:

(2.3) min
θ

tr(Sn − θ1A1 − · · · − θKAK)2.

Let C be a K × K matrix with (i, j)-element being tr AiAj and a be a K × 1
vector with j th element being tr SnAj . Further define D = C−1. Minimizing (2.3)
yields a least squares type estimator for θ :

(2.4) θ̂ = Da.

It can be shown that under Assumptions A and B, θ̂k = θk + Op(n−1), k =
1, . . . ,K , by using (2.10) in Theorem 2.1 below.
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2.2. Tests. In this section, we develop two tests for the linear structures of
covariance matrices:

(2.5) H0 : � = θ1A1 + θ2A2 + · · · + θKAK.

For simplicity, denote �0 = θ1A1 + θ2A2 + · · · + θKAK . A natural estimator
of � is the sample covariance matrix Sn. With the linear structure assumption,
we may estimate θ by θ̂ given in (2.4), and then under H0, a natural estima-
tor of � is �̂0 = θ̂1A1 + · · · + θ̂KAK . Let L(·, ·) be a loss function to measure
the deviation between �̂0 and Sn. Intuitively, we reject the null hypothesis if
L(�̂0,Sn) > δ0 for a given critical value δ0. Motivated by the entropy loss (EL)
L(�̂0,Sn) = tr Sn�̂

−1
0 − log(|Sn�̂

−1
0 |) − p (James and Stein (1961), Muirhead

(1982)), we propose our first test for H0. For p < n − 1,

Tn1 = tr Sn�̂
−1
0 − log

(∣∣Sn�̂
−1
0

∣∣)− p,

where | · | stands for the determinant of a matrix. Denote by λ1 ≥ λ2 ≥ · · · ≥ λp

the eigenvalues of S1/2
n �̂

−1
0 S1/2

n . Then we can write Tn1 as

Tn1 = p

(
p−1

p∑
j=1

λj − p−1
p∑

j=1

logλj

)
− p.

This motivates us to further extend the test to the situation that p > n − 1 by
defining

Tn1 = (n − 1)

(
p−1

n−1∑
j=1

λj − (n − 1)−1
n−1∑
j=1

logλj

)
− (n − 1).

Define q = min{p,n − 1}. Tn1 can be written in a unified form for p < n − 1 and
p ≥ n − 1:

(2.6) Tn1 = q

(
p−1

q∑
j=1

λj − q−1
q∑

j=1

logλj

)
− q.

Since this test is motivated by the entropy loss, we refer this test as EL-test. Mo-
tivated by the quadratic loss (QL), another popular loss function in covariance
matrix estimation (see Haff (1980), Muirhead (1982), Olkin and Selliah (1977)),
we propose our second test statistic

(2.7) Tn2 = tr
(
Sn�̂

−1
0 − Ip

)2
,

and refer the corresponding test as QL-test.

2.3. New results on random matrix and limiting distributions of tests. In order
to derive the limiting distributions of Tn1 and Tn2, we develop new theory on large
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dimensional random matrix. In this section, we first present some useful theoretical
results which are necessary to prove our main theorems.

Let {wki, k, i = 1,2, . . .} be a double array of independent and identically dis-
tributed random variables with mean 0 and variance 1. Let wi = (w1i ,w2i , . . . ,

wpi)
T , and w1, . . . ,wn be independent and identically distributed random sam-

ples from a p-dimensional distribution with mean 0 and covariance matrix Ip . To
derive the limiting distributions of Tn1 and Tn2, we investigate the limiting distri-
butions of the functionals of the eigenvalues of sample covariance matrix

(2.8) F = (n − 1)−1
n∑

i=1

(wi − w̄)(wi − w̄)T ,

where w̄ = n−1 ∑n
i=1 wi . Throughout this paper, denote � = �1/2. Thus, it follows

by Assumption A that

(2.9) F = �−1Sn

(
�T )−1 and Sn = �F�T .

To study the asymptotic behaviors of Tn1 and Tn2 under H0 and H1, we establish
the asymptotic properties of F. Theorems 2.1 and 2.2 will be repeatedly used in
the proofs in (c) of Theorems 2.3 and 2.4. Suppose that λj ’s, j = 1, . . . , p are the
real eigenvalues of F. The empirical spectral distribution (ESD) of F is defined by
Gp(λ) = p−1 ∑p

j=1 I (λj ≤ λ), where I (·) is the indicator function. Note that the
definition of ESD is suitable for both random and nonrandom matrices. Denote the
spectral norm of a matrix A (the maximum eigenvalue) by ‖A‖ hereafter.

THEOREM 2.1. Let Ck , k = 0,1, and 2, be p × p deterministic symmetric
matrices. Under Assumptions A and B, the following statements are valid:

(a) If ‖C0‖ = O(p), tr C0 = O(p) and tr C2
0 = O(p2), then

(2.10) p−1 tr FC0 − p−1 tr C0 = op(1).

(b) If ‖C1‖ = O(p), ‖C2‖ = O(p), tr(Cq
1) = O(pq), tr(Cq

2) = O(pq), and
tr(C1C2)

q = O(pq) for q = 1,2, then

p−1 tr FC1FC2 − p−1 tr C1C2 − yn−1
(
p−1 tr C1

)(
p−1 tr C2

) = op(1).

If we take C1 = Ip , the identity matrix, in (b), then under the condition of (b),
it follows that

(2.11) p−1 tr F2C2 − (1 + yn−1)p
−1 tr C2 = op(1).

Let C1 and C2 be p × p deterministic symmetric matrices. Define

u1 =
{

0 if ‖C1‖ is bounded,

3/2 if ‖C1‖ = O(p), tr
(
Cq

1

) = O
(
pq) for q = 1,2,3,4,
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and

u2 =
{

0 if ‖C2‖ is bounded,

1/2 if ‖C2‖ = O(p), tr
(
Cq

2

) = O
(
pq) for q = 1,2.

Define μ
(1)
n = (p−u1μ

(1)
n1 ,p−u2μ

(1)
n2 )T with

μ
(1)
n1 = [

tr C2
1 + yn−1p

−1(tr C1)
2]+ yn−1p

−1 tr C2
1

+ yn−1(κ − 3)p−1
p∑

i=1

(
eT
i C1ei

)2
,

where we call κ = E(w4
j ), and μ

(1)
n2 = tr C2 with ei being the ith column of the

p × p dimensional identity matrix. Further define 2 × 2 symmetric matrix �(1)
n

with (i, j)-th element being σ
(1)
nij as follows:

σ
(1)
n11 = p−2u1

{
8n−1 tr C4

1 + 4(κ − 3)n−1
p∑

i=1

(
eT
i C2

1ei

)2 + 4
(
n−1 tr C2

1
)2

+ 8
(
n−1 tr C1

)2(
n−1 tr C2

1
)+ 4(κ − 3)

(
n−1 tr C1

)2
n−1

p∑
i=1

(
eT
i C1ei

)2

+ 8
(
n−1 tr C1

)
n−1

[
2 tr

(
C3

1
)+ (κ − 3)

p∑
i=1

(
eT
i C1ei

)(
eT
i C2

1ei

)]}
,

σ
(1)
n22 = p−2u2

[
2n−1 tr C2

2 + (κ − 3)n−1
p∑

i=1

(
eT
i C2ei

)2

]
,

σ
(1)
n12 = p−(u1+u2)

{
4n−1 tr

(
C2

1C2
)+ 2(κ − 3)n−1

p∑
i=1

(
eT
i C2

1ei

)(
eT
i C2ei

)

+ 2
(
n−1 tr C1

)
n−1

[
2 tr(C1C2) + (κ − 3)

p∑
i=1

(
eT
i C1ei

)(
eT
i C2ei

)]}
.

These expressions come from the proof of the following theorem.

THEOREM 2.2. Let C1 and C2 be p×p deterministic symmetric matrices and
let �(1) = limn→∞ �(1)

n > 0 with either ‖C1‖ being bounded or ‖C1‖ = O(p),
tr(Cq

1) = O(pq) for q = 1,2,3,4, and either ‖C2‖ being bounded or ‖C2‖ =
O(p), tr(Cq

2) = O(pq) for q = 1,2. Under Assumptions A and B, it follows that(
p−u1 tr FC1FC1

p−u2 tr FC2

)
− μ(1)

n

d−→ N
(
0,�(1)).

Hereafter, “
d−→” stands for convergence in distribution as n → ∞.
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REMARK 2.1. Theorems 2.1 and 2.2 are established by using related tech-
niques of RMT. The major goals in RMT are to investigate the asymptotic behav-
iors of the eigenvalues and the convergence of the sequence of ESDs. However, the
limiting spectral distribution (LSD) is possibly defective. That is, total mass is less
then one when some eigenvalues tend to ∞ (see Bai and Silverstein (2010)). Under
the RMT framework, the existence of well-defined LSD is a common and neces-
sary assumption. To apply the RMT, we need to impose the restrictive assumptions
on the target matrices Ck , k = 0,1 and 2 in Theorems 2.1 and 2.2. The intuitive
explanation is that the difference between the largest and the smallest eigenvalue is
not too much and does not increase too fast as p → ∞. Note that the Ck , k = 0,1
and 2 in these two theorems are not �. Thus, Theorems 2.1 and 2.2 are applicable
for a wide range of covariance structures.

We next study the asymptotic properties of the proposed test statistics. We first
establish the limiting null distributions of EL-test and QL-test by RMT. Before
presenting the main results, we provide an useful lemma about the spectral distri-
butions of random matrices that will be used to establish the limiting distribution
of Tn1. The technical details and proofs are given in the Supplementary Material
(Zheng et al. (2019)). Define

(2.12)
α1(y) = (

1 − y−1) log(1 − y) − 1, y < 1,

α2(y) = y−1α1
(
y−1)− y−1 log

(
y−1), y > 1;

the mean functions

(2.13)
m12(y) = 0.5 log(1 − y) − 0.5(κ − 3)y, y < 1,

m22(y) = m12
(
y−1), y > 1;

and the covariance functions

(2.14)

ν11(y) = ν12(y) = ν21(y) = (κ − 1)y, y < 1,

ν22(y) = −2 log(1 − y) + (κ − 3)y, y < 1;
v11(y) = (κ − 1)y, y > 1,

v12(y) = v21(y) = κ − 1, y > 1,

v22(y) = −2 log
(
1 − y−1)+ (κ − 3)y−1, y > 1.

LEMMA 2.1. Suppose that Assumptions A and B hold. Let λ1, . . . , λp be the
eigenvalues of F in (2.8) and Vn1 = {νij (yn−1)}i,j and Vn2 = {vij (yn−1)}i,j be
2 × 2 matrices whose entries are defined in (2.14), respectively. Then it follows the
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asymptotic normality, (a) if p < n − 1,

(2.15) V−1/2
n1

⎡⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎝
p∑

j=1

λj − p

p∑
j=1

logλj − pα1(yn−1)

⎞⎟⎟⎟⎟⎟⎠−
(

0
m12(yn−1)

)
⎤⎥⎥⎥⎥⎥⎦

d−→ N(0, I2);

and (b) if p > n − 1,

(2.16) V−1/2
n2

⎡⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎝
n−1∑
j=1

λj − p

n−1∑
j=1

logλj − pα2(yn−1)

⎞⎟⎟⎟⎟⎟⎠−
(

0
m22(yn−1)

)
⎤⎥⎥⎥⎥⎥⎦

d−→ N(0, I2);

and (c) if p = n − 1, then (2.15) still holds by replacing α1(yn−1), νij (yn−1) and
m12(yn−1) by −1, νij (yn) and m12(yn).

REMARK 2.2. Lemma 2.1 establishes the central limit theorem for the func-
tional of eigenvalues of random matrix. It shows that the asymptotic behaviors
of eigenvalues are quite different between the cases p < n − 1 and p > n − 1.
When yn−1 → 0 as n → ∞, α1(yn−1) → 0, m12(yn−1) → 0; When yn−1 →
1−, α1(yn−1) → −1, m12(yn−1) = −∞; When yn−1 → 1+, α2(yn−1) → −1,
m22(yn−1) = −∞; When yn−1 → ∞, α2(yn−1) → 0, m22(yn−1) → 0.

We next present the limiting null distributions of the proposed tests.

THEOREM 2.3. Suppose that Assumptions A and B hold. Denote by σ 2
n1(y) =

−2y − 2 log(1 − y), y < 1. Using the same notation in Lemma 2.1, we have the
following results under H0 in (2.5):

(a) For p < n − 1,

(2.17)
Tn1 + pα1(yn−1) + m12(yn−1)

σn1(yn−1)

d−→ N(0,1).

Moreover, for p = n − 1, σ−1
n1 (yn){Tn1 − p + m12(yn)} d−→ N(0,1).

(b) For p > n − 1,

(2.18)
Tn1 + pα2(yn−1) + m22(yn−1)

σn1(y
−1
n−1)

d−→ N(0,1).

(c) Let B = ∑K
k=1 dkAk , where d = (d1, . . . , dK)T = Dc and c be a K-

dimensional vector with the kth entry being tr Ak�
−1
0 . Assume that σ 2

n2 = y2
n−1 −
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(κ −1)y3
n−1 +2y3

n−1p
−1 tr(�0B)2 +(κ −3)y3

n−1p
−1 ∑p

i=1(e
T
i �T B�ei )

2 has finite
limit. It follows that

(2.19)
Tn2 − (p + κ − 2)yn−1

2σn2

d−→ N(0,1).

REMARK 2.3. When the population is Gaussian, then κ = 3 and the limiting
distributions can be simplified as follows:

Tn1 + pα1(yn−1) + m12(yn−1)

σn1(yn−1)

d−→ N(0,1), p < n − 1,

Tn1 − p + m12(yn)

σn1(yn)

d−→ N(0,1), p = n − 1,

Tn1 + pα2(yn−1) + m22(yn−1)

σn1(y
−1
n−1)

d−→ N(0,1), p > n − 1,

Tn2 − (p + 1)yn−1

2
√

y2
n−1 − 2y3

n−1 + 2y3
n−1p

−1 tr(�0B)2

d−→ N(0,1),

where

α1(yn−1) = [
1 − (yn−1)

−1] log(1 − yn−1) − 1;
α2(yn−1) = y−1

n−1

[
(1 − yn−1) log

(
1 − y−1

n−1

)− 1
]+ y−1

n−1 logyn−1;
m12(yn−1) = 0.5 log(1 − yn−1);
m22(yn−1) = 0.5 log

[
1 − (yn−1)

−1].
Moreover, especially for test of sphericity in Gaussian population, we have [Tn2 −
(p + 1)yn−1]/(2yn−1)

d−→ N(0,1). The statistic Tn1 is just from the original form
of James and Stein’s loss function.

REMARK 2.4. The EL-test Tn1 is just equivalent to the corrected LRT and the
QL test Tn2 is just equivalent to the corrected John’s test for test of sphericity (see
Theorems 2.1 and 2.2 in Wang and Yao (2013)). Moreover, as we mentioned in
the Introduction, the performance of the EL-test between p < n− 1 and p > n− 1
are quite different. This is the reason why the limiting null distribution of EL-test
statistic is presented in part (a) and (b) of Theorem 2.3 separately.

The limiting null distributions can be used to construct the rejection regions of
Tn1 and Tn2. We next establish the asymptotic power functions.

Suppose that under H1 : � = �1, where �1 cannot be represented as a lin-
ear combination of the selected matrices. Using the estimation procedure pro-
posed in Section 2.3, there still exists the linear approximation for �1. De-
noted by a∗

1 = (tr�1A1, . . . , tr�1AK)T , θ∗
1 = (θ∗

11, . . . , θ
∗
K1)

T = Da∗
1, and �∗

1 =
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θ∗
11A1 + · · · + θ∗

K1AK can be viewed as the best linear approximation to �1 under
H1. Recall that θ̂1 defined in (2.4) is the estimator of θ∗ based on observations and
θ̂k1 = θ∗

k1 +Op(1/n), k = 1, . . . ,K . Naturally, Ip −�1�
∗
1
−1 measures the approx-

imation error between the alternative �1 and the null hypothesis. �1�
∗
1
−1 is the

core of the entropy loss and the quadratic loss. After symmetrization, we obtain
the error denoted by E = �∗

1
−1(Ip − �1�

∗
1
−1). Notice that E = 0 under H0.

Let (h1, . . . , hK)T = D(tr EA1, . . . , tr EAK)T and Gp(t) be the ESD of

�T (�∗
1
−1 + ∑K

k=1 hkAk)�, where recall � = �
1/2
1 under H1. Let b0 = yn−1 ×

p−1 tr�1�
∗
1
−1, E0 = −(b0Ip − �1�

∗
1
−1)E + b0�

∗
1
−1 and (h∗

1, . . . , h
∗
K)T =

D(tr E0A1, . . . , tr E0AK)T . Let B∗ = �∗
1
−1 + ∑K

k=1 hkAk and B1∗ = �∗
1
−1 +∑K

k=1 h∗
kAk . Assume that ‖�T �∗

1
−1�‖ = O(p), tr[�T �∗

1
−1�]q = O(pq) for

q = 1,2,3,4, tr[�T B∗�]q = O(p) for q = 1,2 and tr[�T B1∗�]q = O(pq) for
q = 1,2 and Gp(t) has the nondegenerated LSD G(t). Under such alternative
hypothesis, we obtain the following limiting distributions in Theorem 2.4.

THEOREM 2.4. Suppose that Assumptions A and B hold, and the limits of
σ

(1)
nj , j = 1,2,3, exist. Then under H1 : � = �1 that cannot be represented as the

linear combination of given matrices, it follows that:

(a) for p < n − 1, satisfying Gp(t) → G(t),

Tn1 − pF
yn−1,G

1 − μ
(1)
1

σ
(1)
n1

d−→ N(0,1),

(b) for p > n − 1, satisfying Gp(t) → G(t),

Tn1 − pF
yn−1,G

2 − μ
(1)
2

σ
(1)
n2

d−→ N(0,1),

(c)

Tn2 − μ
(1)
3

σ
(1)
n3

d−→ N(0,1),

where μ
(1)
j , j = 1,2,3, F

yn−1,G

j , j = 1,2 and σ
(1)
nj , j = 1,2,3, are given in the

proof of Theorem 2.4.

For fixed significance level α, the corresponding power of the test based on the
statistic Tn2 is βTn2(�1) = 1 − �((μ0 − μ

(1)
3 )/σ

(1)
n3 − 2qα/2σ/σ

(1)
n3 ) + �((μ0 −

μ
(1)
3 )/σ

(1)
n3 + 2qα/2σ/σ

(1)
n3 ), where qα/2 is the α/2 quantile of N(0,1), μ0 = (p +

κ −2)yn−1 and σ = σn2 defined in Theorem 2.3. The following theorem shows that
QL-test is asymptotically unbiased in the sense that βTn2(�1) ≥ α ≥ βTn2(�0), for
any �1 belongs to certain alternative. Let I{·} be an indicator function.
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THEOREM 2.5. Suppose that Assumptions A and B are satisfied and the limit
of σ

(1)
n3 exists. Under H1 : � = �1, and �1 satisfies that the empirical spectral

distribution p−1 ∑p
j=1 I{λ̃j≤t} weakly converges to some distribution function with

λ̃j ’s being the eigenvalues of �T �∗
1
−1� = Ip + A, A ≥ 0 and tr A2 > δ > 0, then

for the prefixed significance level α,

βTn2(�1) > α,

when n is sufficiently large and δ is any given small constant. Furthermore, if
p−1 tr A → c1 
= 0, then βTn2 → 1 as n → ∞.

REMARK 2.5. Note that μ0 = (p+κ −2)yn−1. The the proof of Theorem 2.5
reveals a nice property that for large p, μ

(1)
3 − μ0 ≥ p{(1 + y)c2

1 + 2yc1}, which
tends to ∞ at rate p. This implies that the power of QL-test increases to one
quickly. This is consistent with our numerical studies in Section 3.

2.4. Examples. In this section, we demonstrate how the proposed tests of lin-
ear structures of covariance matrices provide a unified framework for many ex-
isting tests on covariance matrix by several examples, some of which are new to
literature.

EXAMPLE 2.1. Test of sphericity has been well studied since the sphericity
structure is the simplest linear structure of covariance matrix. Let A1 = Ip . The
test of sphericity is to test the null hypothesis

(2.20) H10 : � = θ1A1

for an unknown positive constant θ1 versus H11 : � 
= θ1A1 for any positive con-
stant θ1.

Under H10, θ1 can be estimated by θ̂1 = p−1 tr Sn = θ1 + Op(n−1) under As-
sumptions A and B. When κ = 3 (e.g., under normality assumption), by Theo-
rem 2.3, we have the following limiting null distribution of Tn1. For p < n − 1,

(2.21)
Tn1 + (p − n + 1.5) log(1 − yn−1) − p√−2yn−1 − 2 log(1 − yn−1)

d−→ N(0,1),

and for p > n − 1,

Tn1 + (n − 0.5 − p) log(1 − y−1
n−1) − (n − 1) + (n − 1) log(yn−1)√

−2y−1
n−1 − 2 log(1 − y−1

n−1)

d−→ N(0,1).

It can be easily verified that Tn1 equals (2/n) times the logarithm of the LRT under
normality assumption when p < n − 1. The LRT has been well studied for fixed
and finite dimension p under normality assumption (Section 10.7 of Anderson
(2003)). Recently Jiang and Yang (2013) derived the asymptotic distribution of the
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LRT with y ∈ (0,1] for normal data. Chen, Zhang and Zhong (2010) demonstrated
that the classical LRT may become invalid for high-dimensional data and proposed
a test based on U-statistics with p,n → ∞. Wang and Yao (2013) proposed the
corrected LRT with p/n → (0,1). Both Jiang and Yang (2013) and Wang and Yao
(2013) derived the limiting null distribution, which is the same as that in (2.21),
but Jiang and Yang (2013) imposes normality assumption.

For test of sphericity, the Tn2 becomes

(2.22) Tn2 = tr
[
Sn/

(
p−1trSn

)− Ip

]2
.

Under normality assumption, it follows by Theorem 2.3 that

Tn2 − (p + 1)yn−1

2yn−1

d−→ N(0,1).

The test statistic in (2.22) coincides with the corrected John’s test proposed by
Wang and Yao (2013) with y ∈ (0,∞). Wang and Yao (2013) further showed that
the power of their proposed corrected John’s test is similar to that of Chen, Zhang
and Zhong (2010), and the corrected LRT had greater power than the corrected
John’s test and Chen, Zhang and Zhong’s (2010) test, when the dimension p is
not large relative to the sample size n. But when p is large relative to n (p < n),
the corrected LRT had smaller power than the corrected John’s test and the test
proposed by Chen, Zhang and Zhong (2010).

EXAMPLE 2.2. The compound symmetric structure of high-dimensional co-
variance matrix is another commonly used linear structure of covariance matrix.
Let A1 = Ip and A2 = 1p1T

p , where 1p stands for a p-dimensional column vector
with all elements being 1. Testing compound symmetric structure is to test

H20 : � = θ1A1 + θ2A2,

where θ1 > 0 and −1/(p − 1) < θ2/(θ1 + θ2) < 1 versus H21 : � 
= θ1A1 + θ2A2.
Under normality assumption, Kato, Yamada and Fujikoshi (2010) studied the
asymptotic behavior of the corresponding LRT when p < n, and Srivastava and
Reid (2012) proposed a new test statistic for H20 even if p ≥ n. Without normal-
ity assumption, the EL and QL tests can be used to test the compound symmetric
structure. By (2.4), θ1 and θ2 can be estimated by

θ̂1 = p−1(p − 1)−1(p tr Sn − 1T
p Sn1p

)
,

θ̂2 = p−1(p − 1)−1(1T
p Sn1p − tr Sn

)
,

respectively. Thus, both θ̂1 and θ̂2 are n-consistent under Assumptions A and B.
By Theorem 2.3, it follows that

Tn2 − (p + κ − 2)yn−1

2yn−1

d−→ N(0,1),
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since σn2 = yn−1 in this example. While it seems that the limiting distributions of
Tn1 given in (2.17) and (2.18) cannot be further simplified.

Under normality assumption, when p < n − 1, Tn1 equals (2/n) times the log-
arithm of the LRT in Kato, Yamada and Fujikoshi (2010). Srivastava and Reid’s
(2012) method is different from Kato, Yamada and Fujikoshi (2010) and our pro-
posed tests since Srivastava and Reid (2012) tested the compound symmetric struc-
ture of covariance matrix by testing the independence of random variables. The de-
tails are as follows. Let G be the orthogonal matrix with the first column being the
p−1/21p and the ith column being i−1/2(i − 1)−1/2(1, . . . ,1,−i + 1,0, . . . ,0)T .
Thus, GT �G is a diagonal matrix with the first diagonal element being θ1[1 +
(p −1)θ2] and the remaining diagonal elements being θ1(1− θ2). Thus, Srivastava
and Reid (2012) cast the testing problem H20 as testing the independence of the
first random variable and the remaining p − 1 random variables. Kato, Yamada
and Fujikoshi’s (2010) and Srivastava and Reid’s (2012) tests are both proposed
for the normal case. However, Kato, Yamada and Fujikoshi’s (2010) test is only
valid when p < n, and Srivastava and Reid’s (2012) test still works when p ≥ n.

EXAMPLE 2.3. Denote by σij the (i, j)-entry of �. Here, a (K − 1)-banded
covariance matrix means that σi,j = σj,i = θk if |i − j | = k − 1, k = 1, . . . ,K , and
σij = 0 if |i − j | ≥ K . Let A1 = Ip and Ak , 2 ≤ k ≤ K , be a p × p matrix with
(i, j)-element being 1 if |i − j | = k − 1 and 0 otherwise. Testing the (K − 1)-
banded covariance matrix is equivalent to test

H30 : � = θ1A1 + · · · + θKAK,

where θk’s are unknown parameters. By (2.4), we have

θ̂1 = p−1 tr Sn,

θ̂k = 1

2
(p − k + 1)−1 tr SnAk for 2 ≤ k ≤ K.

When K is a finite positive integer, it can be shown that θ̂k = θk + Op(n−1) if
p/n → y ∈ (0,∞).

Qiu and Chen (2012) proposed a test for banded covariance matrix based on U-
statistic. Their test is different from our proposed testing methods. For general K ,
the limiting null distributions in Theorem 2.3 cannot be further simplified. For K =
2, we may obtain a closed form for dk , k = 1, 2 in Theorem 2.3(c). Specifically, let
α = θ1(2θ2)

−1, β = −α + sgn(α)
√

α2 − 1. Then it follows by some calculations
that

d1 = β

(1 − β2)[1 − β2(p+1)]θ2

×
[

2(β2 − β2(p+1))

p(1 − β2)
− 1 − β2(p+1)

]
,
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d2 = β

(1 − β2)[1 − β2(p+1)]θ2

×
[

4(β3 − β2p+1)

p(1 − β2)
− 2

(
1 − p−1)β − 2

(
1 − p−1)β2p+1

]
.

Then B = d1Ip +d2A2. Thus, σ 2
n2 can be obtained. Then testing H30 can be carried

out by using the proposed EL and QL tests.

EXAMPLE 2.4. The factor model assumes that X can be represented as X =
v1U1 + · · · + vK−1UK−1 + ε, where v1, . . . , vK−1 are random variables and Uk ,
k = 1, . . . ,K − 1 are random vectors. Suppose that v1, . . . , vK−1, U1, . . . ,UK−1
and ε are mutually independent and Cov(ε) = θ1Ip . Conditioning on Uk , k =
1, . . . ,K − 1, the covariance matrix of factor model has the structure � = θ1Ip +
θ2U1UT

1 + · · · + θKUK−1UT
K−1, where θk+1 = Var(vk) for k = 1, . . . ,K − 1. Let

A1 = Ip , and Ak+1 = UkUT
k for k = 1, . . . ,K − 1. Thus, it is of interest to test

H40 : � = θ1A1 + · · · + θKAK,

where θk’s are unknown parameters. Generally, Uk are orthogonal such that
UT

s Ut = p for s = t and 0 for s 
= t . The parameters can be estimated by

θ̂1 = (p − K + 1)−1

(
tr Sn − p−1

K−1∑
k=1

UT
k SnUk

)
,

θ̂k+1 = p−2(UT
k SnUk − pθ̂1

)
for k = 1, . . . ,K − 1. Thus, when K is finite and p/n has a finite positive limit,
θ̂k = θk +Op(n−1) under H40 and Assumptions A and B. Then testing H40 can be
carried out by using the proposed EL and QL tests.

EXAMPLE 2.5. In this example, we consider testing the particular pattern of
covariance matrix. For even p which is fixed and finite, McDonald (1974) consid-
ered

H50 : � =
(
θ1Ip/2 + θ21p/21T

p/2 θ3Ip/2

θ3Ip/2 θ1Ip/2 + θ21p/21T
p/2

)
.

Let A1 = Ip ,

A2 =
(

1p/21T
p/2 0

0 1p/21T
p/2

)
and A3 =

(
0 Ip/2

Ip/2 0

)
.

Then H50 can be written as H50 : � = θ1A1 + θ2A2 + θ3A3. Thus, the proposed
EL and QL tests can be used to H50 with high-dimensional data.

3. Simulation studies and application.

3.1. Practical implementation issues. The limiting distributions derived in
Theorem 2.3 involve the unknown parameter κ . Thus, we need to estimate κ in
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practice. By Assumption A and some direct calculations, it follows that

(3.1) Var
{
(x − μ)T (x − μ)

} = 2 tr
(
�2)+ (κ − 3)

p∑
j=1

σ 2
jj ,

where σjj is the j th diagonal element of �. This enables us to construct a moment
estimator for κ . Specifically, we estimate σjj by σ̂jj = sjj , where sjj is the j th
diagonal element of Sn. A natural estimator for Var{(x − μ)T (x − μ)} is

V̂ = (n − 1)−1
n∑

i=1

{
(xi − x̄)T (xi − x̄) − n−1

n∑
i=1

[
(xi − x̄)T (xi − x̄)

]}2

.

Under H0, a natural estimator of � is �̂0 = ∑K
k=1 θ̂kAk defined in Section 2.2.

As a result, we may estimate tr�2 by using tr �̂
2
0. Thus, we may estimate κ by

(3.2) κ̂0 = 3 + V̂ − 2 tr(�̂
2
0)∑p

j=1 s2
jj

.

It can be shown that κ̂0 is a consistent estimator of κ under H0. The corresponding
test statistics control Type I error rate very well in our simulation study.

As shown in Theorem 2.2, in general, p−1 tr S2
n − p−1 tr�2 does not tend to

zero. This implies that tr S2
n may not serve as an estimator of tr�2. According to

Theorem 2.2 and ignoring the higher order term, a natural estimator for tr�2 is

̂tr
(
�2) = (n − 1)

{
tr
(
S2

n

)− (n − 1)−1[tr(Sn)
]2}

/n.

This estimator is calibrated by the ratio p/(n − 1) = yn−1. This leads to another
estimator of κ given by

(3.3) κ̂1 = 3 + nV̂ − 2{(n − 1) tr(S2
n) − [tr(Sn)]2}

n
∑p

j=1 s2
jj

.

Chen and Qin (2010) also studied the issue of estimation of tr(�2) and proposed
the following estimator:

(3.4) ̂tr
(
�2) = 1

n(n − 1)
tr

[
n∑

j 
=k

(xj − x̄(j,k))xT
j (xk − x̄(j,k))xT

k

]
,

where x̄(j,k) is the sample mean after excluding xj and xk . This leads to another
estimator of κ :

(3.5) κ̂2 = 3 + V̂ − 2n−1(n − 1)−1 tr[∑n
j 
=k(xj − x̄(j,k))xT

j (xk − x̄(j,k))xT
k ]∑p

j=1 s2
jj

.

We compare the performance of κ̂0, κ̂1 and κ̂2 by Monte Carlo simulation study.
Simulation results are reported in the Supplementary Material (Zheng et al.
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(2019)). From our numerical comparison, κ̂0 performs very well across all sce-
narios of all simulation examples in Section 3.2 and its sample standard deviation
is much less than those of κ̂1 and κ̂2. This implies that κ̂0 is more stable than κ̂1
and κ̂2. Thus, we will use κ̂0 throughout our numerical examples in Section 3.2.

3.2. Numerical studies. We illustrate the proposed testing procedure by a real
data example in the Supplemental Material (Zheng et al. (2019)). In this section,
we focus on assessing the finite sample performance of the proposed tests includ-
ing their Type I error rates and powers. All simulations are conducted by using R
code. We generate n random samples from a population x = �1/2w, where � will
be set according to the hypothesis to be tested, and w is defined in the previous
section. In order to examine the performance of the proposed tests under differ-
ent distributions, we consider the elements of w being independent and identically
distributed as (a) N(0,1) or (b) Gamma(4,2)−2. Both distributions have means 0
and variances 1. For each setting, we conduct 1000 Monte Carlo simulations. The
Monte Carlo simulation error rate is 1.96

√
0.05 × 0.95/1000 ≈ 0.0135 at level

0.05. In the numerical studies, we consider four different covariance matrix struc-
tures, which have been studied in the literature.

EXAMPLE 3.1. This example is designed to compare the performance of pro-
posed testing procedures and the test proposed in Srivastava and Reid (2012) for
hypothesis H20 in Example 2.2. We set the covariance matrix structure as � =
θ1Ip + θ21p1T

p + θ3upuT
p , where up is a p-dimensional random vector following

uniform distribution over [−1,1]. The third term is to examine the empirical power
when θ3 
= 0. In our simulation, we set (θ1, θ2) = (6,1) and θ3 = 0.0,0.5,1.0, re-
spectively. We set θ3 = 0 to examine Type I error rates and θ3 = 0.5,1.0 to study
the powers of the proposed tests. The sample size is set as n = 100,200 and the di-
mension is taken to be p = 50,100,500,1000. The percentages of rejecting H20 at
level 0.05 over 1000 simulations are summarized in Table 1, where the labels QL,
EL and SR stand for the QL-test, the EL-test and the test proposed by Srivastava
and Reid (2012), respectively. The top panel with θ3 = 0 in Table 1 is Type I error
rates for different testing methods. Table 1 indicates that both QL and EL tests
retain Type I error rates reasonably well across different sample sizes and dimen-
sions. As Srivastava and Reid (2012) mentioned, SR test can control Type I error
rate under normal assumption. But when the population distribution departures
from the normality, SR test fails to control Type I error rate, even the sample size
increases from 100 to 200. This is expected since the SR test is derived based on
multivariate normality assumption. As the sample size increases from n = 100 to
n = 200, both QL-test and EL-test control Type I error rate better. The empirical
powers are listed in the panel with θ3 = 0.5 or 1.0 in Table 1, from which we can
see that QL-test has higher power than EL-test for all cases in this example, and
SR test for most cases in this example. For normal samples with p = 50 and 100,
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TABLE 1
Simulation results for H20 (in percentage of rejecting H20 over 1000 replications)

Wj ∼ N(0,1) Wj ∼ Gamma(4,2)−2

θ3 n Test p = 50 100 500 1000 50 100 500 1000

0 100 QL 5.23 5.40 5.12 5.19 6.48 5.99 5.64 5.41
EL 5.32 6.51 5.12 5.18 5.77 6.35 5.46 5.54
SR 4.90 5.01 4.91 4.98 9.60 8.96 8.15 8.04

0.5 100 QL 40.25 80.58 100.0 100.0 41.01 80.70 100.0 100.0
EL 13.42 11.38 99.78 100.0 13.74 11.42 99.74 100.0
SR 24.46 59.04 99.99 100.0 41.22 73.86 100.0 100.0

1 100 QL 95.88 99.97 100.0 100.0 95.98 99.97 100.0 100.0
EL 53.53 29.97 100.0 100.0 53.71 30.18 100.0 100.0
SR 87.90 99.67 100.0 100.0 93.61 99.87 100.0 100.0

0 200 QL 5.22 5.14 5.12 5.19 6.32 5.78 5.31 5.34
EL 5.18 5.12 5.05 5.13 5.94 5.42 5.23 5.31
SR 4.98 4.93 4.93 5.03 9.95 9.23 8.44 8.43

0.5 200 QL 79.86 99.32 100.0 100.0 78.56 99.28 100.0 100.0
EL 42.00 58.62 100.0 100.0 41.22 58.62 100.0 100.0
SR 61.74 95.79 100.0 100.0 75.78 98.24 100.0 100.0

1 200 QL 99.98 100.0 100.0 100.0 99.96 100.0 100.0 100.0
EL 97.23 99.53 100.0 100.0 96.86 99.55 100.0 100.0
SR 99.81 100.0 100.0 100.0 99.91 100.0 100.0 100.0

SR test is more powerful than EL-test. We notice that the empirical power of our
proposed methods increases as the dimension increases. It is consistent with our
theoretical results. The power of all three tests increases significantly when the
value of θ3 increases from 0.5 to 1 or the sample size n increases from 100 to 200.

In summary, QL-test performs the best in terms of retaining Type I error rate
and power. The SR test cannot control Type I error rate for nonnormal samples.
EL-test can control Type I error rate well, but is less powerful than QL-test. Under
normality assumption, EL-test is equivalent to the LRT test, which is the most
powerful test in the traditional setting. For a high-dimensional setting, the EL-
test corresponds to the corrected LRT, whose power can be improved by the QL-
test for Hk0, k = 2,3,4 and 5 from this example and simulation examples below.
Additional numerical comparison with a test proposed by Zhong et al. (2017) is
given in Section S.5.2 in Zheng et al. (2019). The proposed QL- and EL-test both
outperform the test proposed by Zhong et al. (2017).

EXAMPLE 3.2. To test covariance matrix structure in H30, the banded co-
variance structure, we construct a banded matrix defined in Example 2.3 with
width of band K = 3. Therefore, the null hypothesis H30 has the linear decom-
position � = θ1Ip + θ2A2 + θ3A3 + θ4upup

T , where A2 and A3 are defined in
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TABLE 2
Simulation results for H30 (in percentage of rejecting H30 over 1000 replications)

Wj ∼ N(0,1) Wj ∼ Gamma(4,2)−2

θ4 n Test p = 50 100 500 1000 50 100 500 1000

0 100 QL 5.30 5.19 5.29 5.34 6.61 6.19 5.83 5.89
EL 5.31 6.34 5.20 5.36 5.83 6.32 5.53 5.81
QC 5.00 5.50 5.50 5.90 5.00 5.80 6.10 5.20

0.5 100 QL 46.01 84.91 100.0 100.0 45.13 83.62 100.0 100.0
EL 15.20 12.23 99.90 100.0 15.35 12.13 99.90 100.0
QC 17.00 70.00 100.0 100.0 24.00 85.30 100.0 100.0

1 100 QL 97.49 99.98 100.0 100.0 96.96 99.98 100.0 100.0
EL 60.45 33.68 100.0 100.0 59.80 33.71 100.0 100.0
QC 83.00 100.0 100.0 100.0 78.00 99.90 100.0 100.0

0 200 QL 5.25 5.19 5.16 5.10 6.44 5.84 5.56 5.55
EL 5.24 5.15 5.04 4.94 6.01 5.46 5.25 5.26
QC 6.00 5.40 5.50 4.50 4.00 4.50 5.80 5.10

0.5 200 QL 85.30 99.66 100.0 100.0 84.09 99.64 100.0 100.0
EL 48.46 65.39 100.0 100.0 47.62 65.20 100.0 100.0
QC 49.00 100.0 100.0 100.0 49.00 99.70 100.0 100.0

1 200 QL 99.99 100.0 100.0 100.0 99.98 100.0 100.0 100.0
EL 98.27 99.80 100.0 100.0 98.00 99.76 100.0 100.0
QC 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Example 2.3 and up is generated by the same way in Example 3.1. We take
(θ1, θ2, θ3) = (6.0,1.0,0.5) and θ4 = 0 to examine Type I error rates and take
θ4 = 0.5,1 to examine the powers. In the simulation studies, we still set sam-
ple size n = 100,200 and dimension p = 50,100,500,1000. The percentages of
rejecting H30 at level 0.05 over 1000 simulations are listed in Table 2. In this
example, we compare the test proposed by Qiu and Chen (2012) for the banded
covariance matrix with our proposed tests, and refer their test as “QC” test here-
inafter. Table 2 indicates that QL, EL and QC tests control Type I error rates well.
QC test is supposed to control Type I error rates well and has high power since it
is particularly proposed for testing banded matrix. Table 2 indicates that QL-test
has higher power than QC test in our simulation settings, in particular, for p = 50.
From our simulation experience, we find that QC test requires more computing
time than QL and EL tests since QC test is a U -statistic method.

EXAMPLE 3.3. In this example, we examine Type I error rates and empirical
powers of the proposed tests for H40 and H50 defined in Examples 2.4 and 2.5,
respectively. We first investigate the performance of the QL and EL tests for H40.
We generate several mutually orthogonal factors. Suppose that u∗

k , k = 1, . . . ,K

are independent and identically distributed random vectors following N(0, Ip). Let
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TABLE 3
Simulation results for Example 3.3 (in percentage of rejecting null hypothesis over 1000

replications)

Wj ∼ N(0,1) Wj ∼ Gamma(4,2)−2

θ4 n Test p = 50 100 500 1000 50 100 500 1000

Results for H40

0 100 QL 5.46 5.46 6.02 6.27 6.89 6.53 6.58 6.94
EL 5.40 6.40 5.79 6.20 6.03 6.42 6.30 6.52

0.5 100 QL 99.99 100.0 100.0 100.0 99.96 100.0 100.0 100.0
EL 97.58 86.91 100.0 100.0 97.38 87.25 100.0 100.0

1 100 QL 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
EL 100.0 99.93 100.0 100.0 99.99 99.93 100.0 100.0

0 200 QL 5.32 5.28 5.42 5.52 6.57 6.05 5.89 6.05
EL 5.30 5.22 5.33 5.65 6.15 5.61 5.60 5.65

0.5 200 QL 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
EL 99.99 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1 200 QL 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
EL 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Results for H50

0 100 QL 5.28 5.19 5.23 5.41 6.59 6.15 5.84 6.16
EL 5.27 6.33 5.17 5.48 5.85 6.35 5.61 5.73

0.5 100 QL 99.64 100.0 100.0 100.0 99.61 100.0 100.0 100.0
EL 85.90 57.86 100.0 100.0 85.89 59.17 100.0 100.0

1 100 QL 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
EL 99.87 97.67 100.0 100.0 99.81 97.86 100.0 100.0

0 200 QL 5.25 5.11 5.08 5.18 6.40 5.84 5.58 5.62
EL 5.25 5.15 5.06 5.05 6.01 5.44 5.29 5.30

0.5 200 QL 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
EL 99.75 99.99 100.0 100.0 99.72 99.99 100.0 100.0

1 200 QL 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
EL 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

u1 = u∗
1 and uk = (Ip − Pk)u∗

k , where Pk is the projection matrix on u1, . . . ,uk−1
for k = 2, . . . ,K . Providing the vectors uk , we have the covariance matrix structure

� = θ0Ip +
K∑

k=1

θkukuT
k

for the factor model defined in Example 2.4. In this simulation, we set K = 4 and
the coefficient vector (θ0, θ1, θ2, θ3)

T = (4,3,2,1)T . Similarly, θ4 = 0 is for Type
I error rates and θ4 = 0.5,1.0 is for powers. We summarize simulation results in
the top panel of Table 3. Both QL and EL tests control Type I error rates well
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and have high powers at θ4 = 0.5 and 1.0. For some cases such as p = 100 and
θ4 = 0.5, the QL-test has slightly higher power than the EL-test.

We next investigate the performance of QL and EL tests for the covariance
matrix with a special pattern H50. We represent the covariance matrix as a linear
combination

� =
4∑

k=1

θkAk,

where A1, A2 and A3 are defined in Example 2.5 and A4 = upuT
p with up ∼

Np(0, Ip). We set the first three coefficients (θ1, θ2, θ3) = (6.0,0.5,0.1) and θ4 =
0.0,0.5 and 1.0 for examining Type I error rates and powers, respectively. We
summarize the simulation results in the bottom panel of Table 3, which shows
that both QL and EL tests can control Type I error rates, and have high power as
well, although QL-test has higher power than EL-test for (n,p) = (100,100) and
θ5 = 0.5.

4. Technical proofs.

4.1. Proofs of Theorems 2.1 and 2.2. Recall the definitions of x̄ and Sn in (2.1)
and F in (2.8), it follows that under Assumption A,

(4.1) F = �−1Sn

(
�T )−1 and Sn = �F�T .

PROOF OF THEOREM 2.1. Using Chebyshev’s inequality, the proof of (2.10)
and (2.11) is completed by showing that

Ep−1 tr FC1FC2 − p−1 tr C1C2 − yn−1
(
p−1 tr C1

)(
p−1 tr C2

) = o(1)

and

Ep−1 tr FC0 − p−1 tr C0 = o(1),

Var
(
p−1 tr FC0

) = o(1),

Var
{
p−1 tr(FC1FC2)

} = o(1).

We have

p−1 tr FC0 = p−1
n∑

i=1

γ T
i C0γ i − p−1nγ̄ T C0γ̄ ,

where γ i = (n − 1)−1/2wi and γ̄ = n−1 ∑n
i=1 γ i . Then p−1E

∑n
i=1 γ T

i C0γ i =
n(n − 1)−1p−1 tr C0 and p−1nEγ̄ T C0γ̄ = (n − 1)−1p−1 tr C0 → 0. Thus,

(4.2) Ep−1 tr FC0 − p−1 tr C0 → 0.
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Moreover,

E

(
p−1

n∑
i=1

γ T
i C0γ i − p−1(n − 1)−1n tr C0

)2

= np−2E
(
γ T

1 C0γ 1 − (n − 1)−1 tr C0
)2 → 0.(4.3)

By (4.2) and (4.3), we have

p−1
n∑

i=1

γ T
i C0γ i − p−1 tr C0 = op(1).

Similarly, we have

p−1nγ̄ T C0γ̄ = op(1).

Thus, we have

p−1 tr FC0 − p−1 tr C0 = op(1).

Moreover, we have

p−1 tr FC1FC2 = p−1
∑
i 
=j

γ T
i C1γ jγ

T
j C2γ i + p−1

∑
i

γ T
i C1γ iγ

T
i C2γ i

− 2p−1nγ̄ T C1FC2γ̄ + p−1n2γ̄ T C1γ̄ γ̄ T C2γ̄ ,

where p−1E
∑

i 
=j γ T
i C1γ jγ

T
j C2γ i = [n/(n − 1)]p−1 tr C1C2,

p−1
∑
i

E
{
γ T

i C1γ iγ
T
i C2γ i

}
= [

n/(n − 1)2]p−1 tr C2 tr C1 + 2n/
[
p(n − 1)2] tr C1C2 + o(1),

and Ep−1nγ̄ T C1FC2γ̄ = n/[p(n − 1)2] tr C1C2 + o(1) and Ep−1n2γ̄ T C1γ̄ γ̄ T ×
C2γ̄ = o(1). Then

p−1E tr FC1FC2 − p−1 tr C1C2 − yn−1
(
p−1 tr C1

)(
p−1 tr C2

) → 0.

Similarly, we can prove

Var
[
p−1

∑
i 
=j

γ T
i C1γ jγ

T
j C2γ i

]
→ 0,

Var
[
p−1

∑
i

γ T
i C1γ iγ

T
i C2γ i

]
= p−2 Var

[
γ T

1 C1γ 1γ
T
1 C2γ 1

] → 0,

Var
[
p−1nγ̄ T C1FC2γ̄

] → 0, Var
[
p−1n2γ̄ T C1γ̄ γ̄ T C2γ̄

] → 0.
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Thus, we have[
p−1

∑
i 
=j

γ T
i C1γ jγ

T
j C2γ i − p−1 tr C1C2

]
= op(1),

[
p−1

∑
i

γ T
i C1γ iγ

T
i C2γ i − yn−1

(
p−1 tr C1

)(
p−1 tr C2

)
− 2n/

[
p(n − 1)2] tr C1C2

]
= op(1)

and {
p−1nγ̄ T C1FC2γ̄ − n/

[
p(n − 1)2] tr C1C2

} = op(1),{
p−1n2γ̄ T C1γ̄ γ̄ T C2γ̄

} = op(1).

Then we have[
p−1 tr FC1FC2 − p−1 tr C1C2 − yn−1

(
p−1 tr C1

)(
p−1 tr C2

)] = op(1).

This completes the proof of Theorem 2.1. �

PROOF OF THEOREM 2.2. Recall γ i = (n − 1)−1/2wi , i = 1, . . . , n, and γ̄ =
n−1 ∑n

i=1 γ i . To derive its limiting distribution, we first calculate E(p−u1 tr FC1 ×
FC1, p−u2 tr FC2)

T . Under Assumptions A and B, E[tr(FC2)] = tr C2 and it fol-
lows by some calculations that

p−u1E tr FC1FC1

= p−u1

(
E
∑
i 
=j

trγ iγ
T
i C1γ jγ

T
j C1 + E

n∑
i=1

γ T
i C1γ iγ

T
i C1γ i

− 2nE
∑
j

tr γ̄ γ̄ T C1γ jγ
T
j C1 + En2 tr γ̄ γ̄ T C1γ̄ γ̄ T C1

)

= p−u1

{[
tr C2

1 + yn−1p
−1(tr C1)

2]+ yn−1p
−1 tr C2

1

+ yn−1(κ − 3)p−1
p∑

i=1

(
eT
i C1ei

)2

}
+ o(1).

To establish the asymptotic normality of (p−u1 tr FC1FC1,p
−u2 tr FC2)

T , it suf-
fices to establish the asymptotic normality of p−u1 tr FC1FC1 + bp−u2 tr FC2 for
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any constant b. Define

An1 = p−u1

(∑
i 
=j

trγ iγ
T
i C1γ jγ

T
j C1 +

n∑
i=1

γ T
i C1γ iγ

T
i C1γ i

)

+ p−u2b

n∑
i=1

γ T
i C2γ i

and

An2 = p−u1

(
−2n

∑
j

tr γ̄ γ̄ T C1γ jγ
T
j C1 + n2 tr γ̄ γ̄ T C1γ̄ γ̄ T C1

)

− p−u2bnγ̄ T C2γ̄ .

It follows that

p−u1 tr FC1FC1 + p−u2b tr FC2 = An1 + An2.

Because Var(An2) = o(1), it is sufficient to deal with An1. We will use Lindeberg
CLT on martingale difference sequence to establish the asymptotic normality of
An1. Let E�(Z) be the conditional expectation of Z given {γ 1, . . . ,γ �}. Then it can
be verified that {(E�−E�−1)An1, � = 1, . . . , n} is a martingale difference sequence.
Define

δ1� = (E� − E�−1)
∑
i 
=j

trγ iγ
T
i C1γ jγ

T
j C1,

δ2� = γ T
� C1γ �γ

T
� C1γ � − Eγ T

� C1γ �γ
T
� C1γ �,

δ3� = b
[
γ T

� C2γ � − (n − 1)−1 tr C2
]
.

Then (E� − E�−1)An1 = p−u1δ1� + p−u1δ2� + p−u2δ3�. We may simplify δ1� as
follows:

δ1� = E�

∑
i 
=j

trγ iγ
T
i C1γ jγ

T
j C1 − E�−1

∑
i 
=j

trγ iγ
T
i C1γ jγ

T
j C1

= 2(n − �)

(n − 1)

[
γ T

� C2
1γ � − (n − 1)−1 tr C2

1
]

+ 2
∑

j≤�−1

[
γ T

� C1γ jγ
T
j C1γ � − (n − 1)−1γ T

j C2
1γ j

]
.

Rewrite

δ2� = γ T
� C1γ �γ

T
� C1γ � − Eγ T

� C1γ �γ
T
� C1γ �

= [
γ T

� C1γ � − (n − 1)−1 tr C1
]2 − E

[
γ T

� C1γ � − (n − 1)−1 tr C1
]2

+ 2(n − 1)−1 tr C1
[
γ T

� C1γ � − (n − 1)−1 tr C1
]
.
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Because the Lindeberg condition of the martingale difference sequence
(p−u1δ1� +p−u1δ2� +p−u2δ3�) may be easily verified, it is sufficient to derive the
limit of

∑n
�=1 E�−1[p−u1δ1� + p−u1δ2� + p−u2δ3�]2. Bai and Silverstein (2010)

pointed out that the CLT of the linear spectral statistics of the sample covariance
matrix Sn from {wij I(|wij |≤ηn

√
n), i = 1, . . . , p, j = 1, . . . , n} is the same as the

sample covariance matrix Sn from {wij , i = 1, . . . , p, j = 1, . . . , n} where ηn → 0
and ηn

√
n → ∞. Then it follows by using Lemma 9.1 in Bai and Silverstein (2010)

that

p−2u1

n∑
�=1

E�−1δ1�δ2�

= p−2u1

{
4(n − 1)−2 tr C1

[
2 tr C3

1 + (κ − 3)

p∑
i=1

(
eT
i C1ei

)(
eT
i C2

1ei

)]}

+ op(1).

By some calculations, we have

p−(u1+u2)
n∑

�=1

E�−1δ1�δ3�

= 2bp−(u1+u2)(n − 1)−1

[
2 tr

(
C2

1C2
)+ (κ − 3)

p∑
i=1

eT
i C2

1eieT
i C2ei

]

+ op(1)

and

p−(u1+u2)
n∑

�=1

E�−1δ2�δ3�

= 2bp−(u1+u2)(κ − 3)(n − 1)−2 tr C1

p∑
i=1

eT
i C1eieT

i C2ei

+ 4bp−(u1+u2)(n − 1)−2 tr C1 tr C1C2 + op(1)

by using Lemma 9.1 in Bai and Silverstein (2010) again. We next deal with the
squared terms. We can show that

p−2u1

n∑
�=1

E�−1δ
2
1�

= 4p−2u1(n − 1)−1

[
2 tr C4

1 + (κ − 3)

p∑
i=1

(
eT
i C2

1ei

)2

]

+ 4p−2u1
[
(n − 1)−1 tr C2

1
]2 + op(1),
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p−2u1

n∑
�=1

E�−1δ
2
2�

= 4p−2u1(n − 1)−2(tr C1)
2

[
2 tr C2

1 + (κ − 3)

p∑
i=1

(
eT
i C1ei

)2

]

+ op(1),

p−2u2

n∑
�=1

E�−1δ
2
3�

= b2p−2u2(n − 1)−1

[
2 tr C2

2 + (κ − 3)

p∑
i=1

(
eT
i C2ei

)2

]
+ op(1).

Thus, we can further derive
∑n

�=1 E�−1(p
−u1δ1� + p−u1δ2� + p−u2δ3�)

2.
Applying Lindeberg CLT on martingale difference sequence on p−u1δ1� +

p−u1δ2� + p−u2δ3�, it follows that for any b, p−u1(tr FC1FC1 − E tr FC1FC1) +
p−u2b(tr FC2 − E tr FC2) converges to a normal distribution with mean 0 and
variance limn→∞

∑n
�=1 E�−1(p

−u1δ1� +p−u1δ2� +p−u2δ3�)
2. The proof of Theo-

rem 2.2 is completed by calculating the corresponding mean vector and covariance
matrix, which equal μ

(1)
n and �(1)

n given in Section 2.4. �

4.2. Proofs of Theorems 2.3, 2.4 and 2.5. Recall �0 = θ1A1 +· · ·+θKAK and
�̂0 = θ̂1A1 +· · ·+ θ̂KAK . Using the identity �̂−1

0 −�−1
0 = −�−1

0 (�̂0 −�0)�̂
−1
0 ,

it follows that

�̂
−1
0 = �−1

0 −
K∑

k=1

(θ̂k − θk)�
−1
0 Ak�

−1
0

+∑
i,j

[
(θ̂i − θi)(θ̂j − θj )�̂

−1
0 Ai�

−1
0 Aj�

−1
0

]

= �−1
0

[
Ip −

K∑
k=1

(θ̂k − θk)Ak�
−1
0

]

+∑
i,j

(θ̂i − θi)(θ̂j − θj )�̂
−1
0 Ai�

−1
0 Aj�

−1
0 .

Then we have Sn�̂
−1
0 = Sn�

−1
0 [Ip −∑K

k=1(θ̂k − θk)Ak�
−1
0 ]+∑

i,j (θ̂i − θi)(θ̂j −
θj )Sn�̂

−1
0 Ai�

−1
0 Aj�

−1
0 . Under H0, by θ̂k = θk + Op(1/n), then the trace of the

second term is of order op(1).
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PROOF OF THEOREM 2.3(a) AND (b). When p < n − 1, it follows by the
Taylor expansion of θ̂k at θk , k = 1, . . . ,K that under H0,

tr Sn�̂
−1
0 − log

∣∣Sn�̂
−1
0

∣∣
= tr Sn�

−1
0 −

K∑
k=1

p(θ̂k − θk)p
−1 tr Sn�

−1
0 Ak�

−1
0

− log
∣∣Sn�

−1
0

∣∣+ K∑
k=1

p(θ̂k − θk)p
−1 tr Ak�

−1
0 + op(1)

= tr Sn�
−1
0 − log

∣∣Sn�
−1
0

∣∣+ op(1)

= tr F − log |F| + op(1)(4.4)

since p−1 tr Sn�
−1
0 Ak�

−1
0 − p−1 tr Ak�

−1
0 = op(1) under H0 by (2.10) with set-

ting C0 = �T �−1
0 Ak�

−1
0 �. By Lemma 2.1 and when p < n − 1, we have

Tn1 + pα1(yn−1) + m12(yn−1)

σn1(yn−1)

d−→ N(0,1),

where σ 2
n1(yn−1) = −2yn−1 − 2 log(1 − yn−1).

This completes the proof of Theorem 2.3(a) with p < n − 1. Similarly, Theo-
rem 2.3(a) with p = n − 1 can be obtained.

Similarly, for p > n − 1, a direct application of Lemma 2.1 to (4.4) leads to

Tn1 + pα2(yn−1) + m22(yn−1)√
y−2
n−1v11(yn−1) + v22(yn−1) − 2y−1

n−1v12(yn−1)

d−→ N(0,1).

That is,

Tn1 + pα2(yn−1) + m22(yn−1)

σn1(y
−1
n−1)

d−→ N(0,1).

This completes the proof of Theorem 2.3(b). �

PROOF OF THEOREM 2.3(c). Under H0, θ̂k = θk + Op(1/n), it follows that

tr
(
Sn�̂

−1
0 − Ip

)2

= tr
(
Sn�

−1
0 − Ip

)2 + p

K∑
k=1

(θ̂k − θk)2p−1 tr Sn�
−1
0 Ak�

−1
0

− p

K∑
k=1

(θ̂k − θk)2p−1 tr
(
Sn�

−1
0

)2Ak�
−1
0 + op(1).(4.5)
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Taking C0 = �T �−1
0 Ak�

−1
0 � for k = 1, . . . ,K , it follows by Theorem 2.1 that

tr
(
Sn�̂

−1
0 − Ip

)2

= tr
(
Sn�

−1
0 − Ip

)2 − 2yn−1

K∑
k=1

(θ̂k − θk) tr Ak�
−1
0 + op(1)

= tr
(
Sn�

−1
0 − Ip

)2 − 2yn−1
(
tr �̂0�

−1
0 − p

)+ op(1).

By the definition of θ̂ in Section 2.1, it follows that

tr �̂0�
−1
0 = tr SnB = tr F�T B�,

where B is defined in Theorem 2.3(c) and tr�0B = tr�0�
−1
0 = p. As a result, we

have

tr
(
Sn�̂

−1
0 − Ip

)2

= tr(F − Ip)2 − 2yn−1
(
tr �̂0�

−1
0 − p

)+ op(1)

= −2 tr F − 2yn−1 tr �̂0�
−1
0 + tr F2 + 2yn−1p + p + op(1)

= −2 tr F − 2yn−1 tr F�T B� + tr F2 + 2yn−1p + p + op(1)

= tr F2 + tr F
(−2Ip − 2yn−1�

T B�
)+ 2yn−1p + p + op(1).

By Theorem 2.2, we have

tr(Sn�̂
−1
0 − Ip)2 − pyn−1 − (κ − 2)y

2σ
→ N(0,1),

where

σ 2 = 4−1

[
4(κ − 1)

(
y + 2y2)+ 8y3p−1 tr(�0B)2

+ 4(κ − 3)y3p−1
p∑

i=1

(
eT
i �T B�ei

)2

+ 4y2 + 4(κ − 1)
(
y + 2y2 + y3)− 8(κ − 1)y(1 + y)2

]

= 4−1

[
4y2 + 8y3p−1 tr(�0B)2

+ 4(κ − 3)y3p−1
p∑

i=1

(
eT
i �T B�ei

)2 − 4(κ − 1)y3

]
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= y2 + 2y3p−1 tr(�0B)2 + (κ − 3)y3p−1
p∑

i=1

(
eT
i �T B�ei

)2

− (κ − 1)y3. �

PROOF OF THEOREM 2.4(c). Due to the space limit, the proof of Theo-
rem 2.4(a) and (b) are given in the Supplementary Material (Zheng et al. (2019)).

We next derive the power function of Tn2. First, we consider �T �∗
1
−1� being

bounded spectral norm. When �T �∗
1
−1� has unbounded spectral norm, we only

add a factor p−3/2 to Tn2. Then the same results are obtained. Under H1, it follows
that

tr
(
Sn�̂

−1
0 − Ip

)2

= tr
(
Sn�

∗
1
−1 − Ip

)2 + p

K∑
k=1

(
θ̂k − θ∗

k

)
2p−1 tr Sn�

∗
1
−1Ak�

∗
1
−1

− p

K∑
k=1

(
θ̂k − θ∗

k

)
2p−1 tr

(
Sn�

∗
1
−1)2Ak�

∗
1
−1 + op(1).

Recall F = ∑n
i=1 γ iγ

T
i − nγ̄ γ̄ T . Thus, we have

p−1 tr Sn�
∗
1
−1Ak�

∗
1
−1

= p−1
n∑

i=1

γ T
i �T �∗

1
−1Ak�

∗
1
−1�γ i − (n/p)γ̄ T �T �∗

1
−1Ak�

∗
1
−1�γ̄ .

Because p−1 ∑n
i=1 Eγ T

i �T �∗
1
−1Ak�

∗
1
−1�γ i = p−1 tr��∗

1
−1Ak�

∗
1
−1 + o(1)

and

(n/p)Eγ̄ T �T �∗
1
−1Ak�

∗
1
−1�γ̄ = [

(n − 1)p
]−1 tr��∗

1
−1Ak�

∗
1
−1

,

then we have

p−1E tr Sn�
∗
1
−1Ak�

∗
1
−1 − p−1 tr��∗

1
−1Ak�

∗
1
−1 → 0.

Furthermore, we can show that

Var

[
p−1

n∑
i=1

γ T
i �T �∗

1
−1Ak�

∗
1
−1�γ i

]
→ 0 and

Var
[
γ̄ T �T �∗

1
−1Ak�

∗
1
−1�γ̄

] → 0.
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Then we have p−1 tr Sn�
∗
1
−1Ak�

∗
1
−1 − p−1 tr��∗

1
−1Ak�

∗
1
−1 = op(1). More-

over, we have

p−1E tr
[
Sn�

∗
1
−1]2Ak�

∗
1
−1

= p−1E
n∑

i=1

trγ iγ
T
i �T �∗

1
−1�γ iγ

T
i �T �∗

1
−1Ak�

∗
1
−1�

+ p−1E
∑
i 
=j

trγ iγ
T
i �T �∗

1
−1�γ jγ

T
j �T �∗

1
−1Ak�

∗
1
−1�

= np−1(n − 1)−2

[
2 tr Ak�

∗
1
−1(��∗

1
−1)2

+ (κ − 3)

p∑
�=1

(
eT
� �T �∗

1
−1�e�

)(
eT
� �T �∗

1
−1Ak�

∗
1
−1�e�

)]

+ np−1(n − 1)−2(tr��∗
1
−1)(tr��∗

1
−1Ak�

∗
1
−1)

+ np−1(n − 1)−1 tr Ak�
∗
1
−1(��∗

1
−1)2

.

Thus, it follows that p−1E tr(Sn�
∗
1
−1)2Ak�

∗
1
−1 − yn−1(p

−1 tr��∗
1
−1)(p−1 ×

tr��∗
1
−1Ak�

∗
1
−1) − p−1 tr Ak�

∗
1
−1(��∗

1
−1)2 → 0. Similarly, it can be shown

that

Var

[
p−1

n∑
i=1

trγ iγ
T
i �T �∗

1
−1�γ iγ

T
i �T �∗

1
−1Ak�

∗
1
−1�

]
→ 0

and

Var
[
p−1E

∑
i 
=j

trγ iγ
T
i �T �∗

1
−1�γ jγ

T
j �T �∗

1
−1Ak�

∗
1
−1�

]
→ 0.

Therefore, we obtain p−1 tr(Sn�
∗
1
−1)2Ak�

∗
1
−1 − yn−1(p

−1 tr��∗
1
−1)(p−1 ×

tr��∗
1
−1Ak�

∗
1
−1) − p−1 tr Ak�

∗
1
−1(��∗

1
−1)2 = op(1). As a result, it follows

that

tr
(
Sn�̂

−1
0 − Ip

)2

= tr
(
Sn�

∗
1
−1 − Ip

)2 + p

K∑
k=1

(
θ̂k − θ∗

k

)
2p−1 tr Sn�

∗
1
−1Ak�

∗
1
−1

− p

K∑
k=1

(
θ̂k − θ∗

k

)
2p−1 tr

(
Sn�

∗
1
−1)2Ak�

∗
1
−1 + op(1)

= tr
[
Sn�

∗
1
−1 − Ip

]2 + 2p

K∑
k=1

(
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k

)
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1
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∗
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− 2p

K∑
k=1

(
θ̂k − θ∗

k

)[
yn−1

(
p−1 tr��∗

1
−1)(

p−1 tr��∗
1
−1Ak�
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1
−1)

+ p−1 tr Ak�
∗
1
−1(��∗

1
−1)2]
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Note that

2p

K∑
k=1

(
θ̂k − θ∗

k

)
p−1 tr��∗

1
−1Ak�

∗
1
−1 = 2 tr �̂0�

∗
1
−1��∗

1
−1 − 2 tr��∗

1
−1

and

2p
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(
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k
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(
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1
−1)(
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1
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∗
1
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+ p−1 tr Ak�
∗
1
−1(��∗

1
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1
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∗
1
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1
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1
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��∗

1
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.

Thus,

2p
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k=1
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)
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1
−1Ak�

∗
1
−1

− 2p

K∑
k=1

(
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)[
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p−1 tr��∗
1
−1Ak�

∗
1
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,

where B1 = ∑K
k=1 eT

k Dg · Ak with g = (tr GA1, . . . , tr GAK)T and G = �∗
1
−1 ×

��∗
1
−12(1 − yn−1p

−1 tr��∗
1
−1) − 2�∗

1
−1(��∗

1
−1)2. Then we have

tr
(
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−1
0 − Ip
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(
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)2 + 2p

K∑
k=1

(
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− 2p

K∑
k=1
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It follows by Theorem 2.2 that under H1,
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+ 4(κ − 3)n−1
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1
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1
−1�ei
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�

5. Discussion. We have studied hypothesis testing on linear structure of high-
dimensional covariance matrix, and developed two tests for the linear structure.
Under the null hypothesis, the covariance matrix can be represented as a linear
combination of a finite number of prespecified matrix bases. This implies that we
may estimate the covariance matrix well. If the null hypothesis gets rejected, one
may have to consider more general structure or unstructured covariance matrix,
and conduct further study.
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