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In this Web Appendix, we compare the power of the proposed test statis-
tics with existing tests in the literature in Section S1. Section S2 proves the
convergence rate of φ̂ proposed in Section 3.3.2. Section S3 discusses the
asymptotic powers of partial penalized test statistics. Discussions of Con-
dition (A1), (A2), (A3) and (A4) are presented in Section S4. Proofs and
technical lemmas are given in Section S5 and Section S6 respectively. Section
S7 contains the real data analysis. Section S8 includes additional simulation
studies for Poisson regression model and additional tables and plots.

APPENDIX S1: POWER COMPARISONS

In this section, we consider the following class of null hypothesis: H0 :
β0,j = 0 and compare the power of our tests with the Wald test in van de
Geer et al. (2014) and the decorrelated score test statistic in Ning and Liu
(2017). Without loss of generality, we fix j = 1. Consider the following local
alternative hypothesis Ha : β0,1 = n−1/2h for some h 6= 0. According to
Corollary 3.1, with some calculations, we can show that for T = TW , TS and
TL, the power function takes the form

Pr(T > χ2
α(1)) = Pr(χ2(r, γn) > χ2

α(1)) + o(1) = Pr(|Z +
√
γn| > zα

2
) + o(1)

= Pr(Z > zα
2
−√γn) + Pr(Z < −zα

2
−√γn) + o(1)

= g(α, γn) + o(1),(S1.1)

where g(α, γ) = Pr(Z > zα/2 −
√
γ) + Pr(Z ≥ zα/2 +

√
γ) for any γ ≥

0, Z denotes a standard normal variable, zα is the upper αth quantile of
a standard normal distribution, and γn =

(
φ0e

T
1,1+sΩne1,1+s

)−1
h2 where

e1,q denotes the basis vector of length q, with the first element equal to 1
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and other elements equal to 0. To simplify the presentation, we consider a
random design setting where X1, . . . ,Xn are independent and identically
distributed, according to the distribution of X0. Define

Φ = E
{
X0b

′′(X0β0)XT
0

}
.

Under certain regularity conditions, it follows from (S1.1) that

Pr(T > χ2
α(1)) = g

(
α, {φ0e

T
1,1+s(Φ{1}∪S,{1}∪S)−1e1,1+s}−1h2

)
+ o(1).

S1.0.1. Comparison with the Wald test based on the de-sparsified Lasso
estimator. van de Geer et al. (2014) proposed to de-sparsify the Lasso
estimator for constructing statistical tests for β0,j in a high dimensional
generalized linear model. Define the Lasso estimator

β̂L = arg min
β

(
1

n

n∑
i=1

{b(βTXi)− YiβTXi}+ λn‖β‖1

)
.

The de-sparsified Lasso estimator β̂DL is given by

β̂DL = β̂L +
1

n
Θ̂XT {Y − µ(Xβ̂L)},

where Θ̂ is some consistent estimator for Φ−1 obtained by nodewise regres-
sion. It follows from Theorem 3.1 in van de Geer et al. (2014) that

√
n(β̂DLj − β0,j)/σ̂j ∼ N(0, 1),(S1.2)

where

σ̂2
j =

1

n

(
eTj,pΘ̂X

T {Y − µ(Xβ̂L)}{Y − µ(Xβ̂L)}TXΘ̂ej,p

)
.

Moreover, under the model assumption (1.1), it follows from Corollary 3.1
and the proof of Theorem 3.1 in van de Geer et al. (2014) that

σ̂2
j = φ0e

T
j,pΦ

−1ej,p + op(1).(S1.3)

To test H0 : β0,1 = 0, van de Geer et al. (2014) considered the Wald-type

statistic and proposed to reject H0 when
√
n|β̂DL1 | > zα/2σ̂1 for a given α. It

follows from (S1.2) that such test statistic has correct size under H0. Assume
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lim infn eT1,pΦ
−1e1,p > 0, under the local alternative, it follows from (S1.2)

and (S1.3) that

Pr(
√
n|β̂DL1 | > zα/2σ̂1) = Pr(

√
n(β̂DL1 − β0,1) > zα/2σ̂1 − h)

+ Pr(
√
n(β̂DL1 − β0,1) < −zα/2σ̂1 − h)

= Pr

√n(β̂DL1 − β0,1)

σ̂1
> zα/2 −

h√
φ0eT1,pΦ

−1e1,p


+ Pr

√n(β̂DL1 − β0,1)

σ̂1
< −zα/2 −

h√
φ0eT1,pΦ

−1e1,p

+ o(1)

= g
(
α, (φ0e

T
1,pΦ

−1e1,p)
−1h2

)
+ o(1).

Lemma S.1. For any p × p positive definite matrix Φ and any set S ⊆
[2, 3, . . . , p], we have

eT1,pΦ
−1e1,p ≥ eT1,1+s(Φ{1}∪S,{1}∪S)−1e1,1+s,

with equality if and only if

ΦS,{1} = ΦS,({1}∪S)c(Φ({1}∪S)c,({1}∪S)c)
−1Φ({1}∪S)c,{1}.

Remark S1.1. Observe that for any 0 < α < 1, g(α, γ) is strictly in-
creasing as a function of γ. Lemma S.1 therefore suggests that

g
(
α, (φ0e

T
1,pΦ

−1e1,p)
−1h2

)
≤ g

(
α, {φ0e

T
1,1+s(Φ{1}∪S,{1}∪S)−1e1,1+s}−1h2

)
,

with equality if and only if

ΦS,{1} = ΦS,({1}∪S)c(Φ({1}∪S)c,({1}∪S)c)
−1Φ({1}∪S)c,{1}.

This implies that our test statistics are asymptotically more powerful than
the Wald-type statistic based on the de-sparsified Lasso estimator.

S1.0.2. Comparison with the decorrelated score test. LetM1 = [2, . . . , p].
For any θ ∈ R, the decorrelated score function (Ning and Liu, 2017) is given
by

ŜD(θ) = {XM1ω̂ −X1}T {Y − µ(θX1 +XM1 β̂M1)},

for some penalized regression estimator β̂,

β̂ = arg min
β

 1

n

n∑
i=1

{b(βTXi)− YiβTXi}+

p∑
j=1

pλ(|βj |)

 ,
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and a Dantzig type estimator ω̂,

ω̂ = arg min ‖ω‖1 s.t. ‖(ωTXT
M1
−X1)Σ(Xβ̂)XM1‖∞ ≤ nλ′.

For testing H0 : β0,1 = 0, Ning and Liu (2017) proposed the following
decorrelated score test statistic,

TSD =

√
nŜD(0)

σ̂s
,

for some σ̂2
s that consistently estimates σ2

s = φ0(v∗)TΦv∗ where v∗ =
(1,−(ω∗)T )T and ω∗ = (ΦM1,M1)−1Φ{1}M1

. The null hypothesis is rejected
when |TSD| > zα/2. It was shown in Theorem 3.1 in Ning and Liu (2017)
that such tests has correct size under H0.

Moreover, under Ha : β0,1 = n−1/2h, it follows from Corollary D.1 in their
supplementary article that, for any 0 < α < 1,

Pr(|TSD| > zα/2) = Pr

(
Z > zα/2 − h

√
(v∗)TΦv∗/φ0

)
− Pr

(
Z > zα/2 + h

√
(v∗)TΦv∗/φ0

)
+ o(1) = g(α, h2(v∗)TΦv∗/φ0) + o(1),

where Z denotes a standard normal random variable. By the definition of
v∗, we have

(v∗)TΦv∗ = Φ{1}{1} −Φ{1},M1
(ΦM1,M1)−1ΦM1,{1} =

(
eT1,pΦ

−1e1,p

)−1
,

where the last equality follows by the block matrix inversion formula (Lemma
S.9). Therefore, it follows from Lemma S.1 and the monotonicity of g(·) that
our tests are more powerful than the decorrelated score test.

APPENDIX S2: ADDITIONAL DETAILS REGARDING φ̂ IN LINEAR
REGRESSION MODELS

By Theorem 2.1, we have with probability tending to 1,

Ŝa = S.(S2.1)

Besides,

‖β̂a,S∪M − βa,S∪M‖2 = Op

(√
(s+m)/n

)
.(S2.2)
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Let εi = Yi −XT
i β0. Under the event defined in (S2.1), we have

φ̂ =
1

n− s−m

n∑
i=1

ε2
i︸ ︷︷ ︸

I1

+
2

n− s−m

n∑
i=1

εiX
T
i,S∪M(β̂a,S∪M − βa,S∪M)︸ ︷︷ ︸

I2

+
1

n− s−m
(β̂a,S∪M − β0,S∪M)T

(
n∑
i=1

Xi,S∪MX
T
i,S∪M

)
(β̂a,S∪M − β0,S∪M)︸ ︷︷ ︸

I3

.

By Chebyshev’s inequality, we have for any t0 > 0,

Pr

(
1

n

n∑
i=1

(ε2
i − φ0) > t0

)
≤
∑n

i=1 Var(ε2
i )

n2t20
.

This implies

I1 =
n

n− s−m
φ0 +Op

( √
n

n− s−m

)
.

Since we require max(s,m) = o(n), we have

I1 = φ0 +Op(n
−1/2).(S2.3)

By Cauchy-Schwarz inequality,

|I2| ≤

∥∥∥∥∥ 2

n− s−m

n∑
i=1

εiXi,S∪M

∥∥∥∥∥
2︸ ︷︷ ︸

I∗2

‖β̂a,S∪M − βa,S∪M‖2.

With some calculations, we have

E(I∗2 )2 =
4

(n− s−m)2
E

n∑
i,j=1

εiεjX
T
i,S∪MXj,S∪M

=
4φ0

(n− s−m)2

n∑
i=1

‖Xi,S∪M‖22 =
φ0

(n− s−m)2
tr
(
XT
S∪MXS∪M

)
≤ 4φ0(s+m)

(n− s−m)2
λmax

(
XT
S∪MXS∪M

)
= O

(
n(s+m)

(n− s−m)2

)
= O

(
(s+m)

n

)
,

where the fourth equality is due to Condition (A1), and the last equality is
due to the condition that max(s,m) = o(n). This implies

I∗2 = Op

(√
s+m√
n

)
,
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which together with (S2.2) yields

I2 = Op

(
s+m

n

)
.(S2.4)

Besides, it follows (S2.2) and Condition (A1) that

I3 ≤ 1

n− s−m
‖β̂a,S∪M − βa,S∪M‖22λmax

(
XT
S∪MXS∪M

)
= O

(
s+m

n− s−m

)
= O

(
s+m

n

)
.

Combining this together with (S2.3) and (S2.4) gives that

φ̂ = φ0 +Op

(
1√
n

)
+Op

(
s+m

n

)
= φ0 +Op

(
1√
n

)
,

where the last equality is due to the condition that max(s,m) = o(n1/2).

APPENDIX S3: ADDITIONAL DETAILS REGARDING POWERS OF
PARTIAL PENALIZED TEST STATISTICS

The proposed test statistics are based on the partial penalized estimators
β̂0, β̂a defined in (2.2) and (2.3). Alternatively, we can construct our test
statistics based on

β̂N0 = arg max
β

QNn (β, λn,0) subject to CβM = t,

β̂Na = arg max
β

QNn (β, λn,a),

where

QNn (β, λ) =
1

n

n∑
i=1

{YiβTXi − b(βTXi)} −
∑

j /∈M∪N

pλ(|βj |),

for some set N ⊆ [1, . . . , p]. The set N can be chosen by the domain knowl-
edge. For example, it can contain variables that the analyst thinks are im-
portant for ensuring robustness. Let N ∗ = N ∩ (M∪ S)c. Define

TNL = 2n{Ln(β̂Na )− Ln(β̂N0 )}/φ̂,

TNW = (Cβ̂Na,M − t)T
(
CΩ̂Na,mmC

T
)−1

(Cβ̂Na,M − t)/φ̂,

TNS = {Y − µ(Xβ̂N0 )}T
(
XM∪N ∗

X
ŜN0

)
Ω̂N0

(
XM∪N ∗

X
ŜN0

)T
{Y − µ(Xβ̂N0 )}/φ̂,
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where φ̂ is some constant estimators for φ0, Ω̂Na,mm is the first m rows and

columns of Ω̂Na ,

Ω̂Na = n

(
XT
MΣ(Xβ̂Na )XM XT

MΣ(Xβ̂Na )X
ŜNa ∪N ∗

XT
ŜNa ∪N ∗

Σ(Xβ̂Na )XM XT
ŜNa ∪N ∗

Σ(Xβ̂Na )X
ŜNa ∪N ∗

)−1

,

Ω̂N0 = n

(
XT
M∪N ∗Σ(Xβ̂N0 )XM∪N ∗ XT

M∪N ∗Σ(Xβ̂N0 )X
ŜN0

XT
ŜN0

Σ(Xβ̂N0 )XM∪N ∗ XT
ŜN0

Σ(Xβ̂N0 )X
ŜN0

)−1

,

and

ŜNa = {j ∈ (M∪N ∗)c : β̂Na,j 6= 0}, ŜN0 = {j ∈ (M∪N ∗)c : β̂N0,j 6= 0}.

For a given significance level α, we reject the null hypothesis when TN >
χ2
α(r) for TN = TNL , T

N
W or TNS .

Similar to Corollary 3.1, we can show the Type I error rates of TNL , TNW and
TNS are close to the nominal level. Besides, under the alternativeCβ0,M−t =
hn, the asymptotic power functions of these test statistics are equal to

Pr(χ2(r, γNn ) > χ2
α(r)),(S3.1)

where γNn = nhTn
(
CΩNmmC

T
)−1

hn/φ0, ΩNmm is the firstm rows and columns
of

ΩNn =

 1

n

 XT
MΣ(Xβ0)XM XT

MΣ(Xβ0)XS XT
MΣ(Xβ0)XN ∗

XT
SΣ(Xβ0)XM XT

SΣ(Xβ0)XS XT
SΣ(Xβ0)XN ∗

XT
N ∗Σ(Xβ0)XM XT

N ∗Σ(Xβ0)XS XT
N ∗Σ(Xβ0)XN ∗


−1

.

We now show the test statistic achieves its greatest power if N ∗ = 0. This
means the partial penalized tests are most advantageous if each unpenalized
variable is either an important variable (i.e., in S) or a variable in M. By
(S3.1), it suffices to prove γNn ≤ γn for any N . Assume for now, we’ve shown

inf
a∈Rm

(
aTΩNmma− aTΩmma

)
≥ 0.(S3.2)

This implies

inf
a∈Rr

(
aTCΩNmmC

Ta− aTCΩmmC
Ta
)
≥ 0,(S3.3)

and hence the matrix CΩNmmC
T −CΩmmC

T is positive semidefinite.
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Note that CΩmmC
T is positive definite. By the eigenvalue decomposition

theorem, we can find some positive definite matrix Q such that QQ =
CΩmmC

T . By (S3.3), we can similarly show that the matrix

Q−1CΩNmmC
TQ−1 − I

is positive semidefinite. As a result, the eigenvalues of Q−1CΩNmmC
TQ−1

are all greater than or equal to 1. This implies that the eigenvalues of
Q(CΩNmmC

T )−1Q−1 are all smaller than or equal to 1. Therefore, the ma-
trix

I −Q(CΩNmmC
T )−1Q

is positive semidefinite. This further implies that the matrix
(
CΩmmC

T
)−1−(

CΩNmmC
T
)−1

is positive semidefinite. Therefore, we have γn ≥ γNn .
It remains to prove (S3.2). Let ΩNm+s,m+s be the first (s + m) rows and

columns of ΩNn . By Lemma S.1, the matrix ΩNm+s,m+s − Ωn is positive
semidefinite. The assertion (S3.2) thus follows.

APPENDIX S4: DISCUSSION OF THE TECHNICAL CONDITIONS

S4.1. Discussion of Condition (A1). For Gaussian linear regression
models, Condition (A1) reduces to (A1*) given below.

(A1*) Assume

max
1≤j≤p

‖Xj‖∞ = O
(√

n/ log(p)
)
, max

1≤j≤p
‖Xj‖2 = O(

√
n),

λmin

(
XT
S∪MXS∪M

)
≥ cn, λmax

(
XT
S∪MXS∪M

)
= O(n),

‖XT
(S∪M)cXS∪M‖2,∞ = O(n).

for some constants c > 0.
For logistic regression and Poisson regression models, Condition (A1) is

implied by (A1*) and the following conditions:

max
1≤i≤n

|XT
i β0| = O(1),(S4.1)

max
1≤j≤p

‖Xj‖∞ = O

(
n1/2

(s+m) log1/2 n

)
,(S4.2)

max
1≤j≤p

λmax

{
XT
S∪Mdiag(|Xj |)XS∪M

}
= O(n).(S4.3)

We note that van de Geer et al. (2014) and Ning and Liu (2017) also assumed
(S4.1) to establish the asymptotic properties of de-sparsified Lasso estimator
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and the decorrelated score statistic under the high dimensional generalized
linear models. Assume max(s,m) = O(nl0) for some 0 < l0 < 1/2 and that
each covariate has sub-exponential tail. Then we can show (S4.2) holds with
probability tending to 1.

To further simplify Condition (A1*) and (S4.3), we consider a random
design setting where X1,X2, . . . ,Xn are i.i.d copies of some random vector
X0 ∈ Rp. More specifically, we consider the following two cases: (i) The
bounded case: maxj=[1,...,p] |X0,j | ≤ ω0 for some constant ω0 > 0. (ii) The

sub-Gaussian case: sup‖v‖2≤1,v∈Rp ‖vTX0‖ψ2 ≤ ω0 where for any random
variable Z,

‖Z‖ψ2 ≡ inf
C>0

{
E exp

(
|Z2|
C2

)
≤ 2

}
.

Let Λ = EX0X
T
0 .

Lemma S.2. Assume that λmax(ΛS∪M,S∪M) = O(1), λmin(ΛS∪M,S∪M) ≥
c̄ for some constant c̄ > 0, max(s,m) = o{(n/ log n)1/2} and max(s,m) log p =
o(n). Then in the bounded case, Condition (A1*) and Condition (S4.3) hold
with probability tending to 1.

Lemma S.3. Assume that λmin(ΛS∪M,S∪M) ≥ c̄ for some constant c̄ >
0, max(s,m) log p = o(n/ log n) and log p = O(

√
n). Then in the sub-

Gaussian case, Condition (A1*) and Condition (S4.3) hold with probability
tending to 1.

Proofs of Lemma S.2 and Lemma S.3 are given in Section S5.3 and Section
S5.4, respectively.

S4.2. Discussion of Condition (A2). The condition p
′
λn,j

(dn) = o((s+

m)−1/2n−1/2), λn,jκ0,j = o(1) automatically holds for SCAD penalty func-
tion, since p

′
λn,j

(dn) = 0 and κ0,j = 0 when dn � λn,j . The Lasso penalty

function doesn’t satisfy the condition p′λn,j (dn) = o((s + m)−1/2n−1/2).

Hence, the corresponding (un)constrained estimators have relatively large
biases and don’t have the asymptotic distributions in Theorem 2.1.

S4.3. Discussion of Condition (A3). For logistic regression models,
we have maxi |Yi − µ(XT

i β0)| ≤ 1. It is easy to show Condition (A3) holds



10 SHI, SONG, CHEN AND LI

with M = 1 and v0 = 2 exp(1). For Gaussian linear models, we have

E

{
exp

(
|Yi −XT

i β0|
φ0

)
− 1− |Yi −X

T
i β0|

φ0

}
≤ E exp

(
|Yi −XT

i β0|
φ0

)
≤ 2.

Hence, (A3) holds with M = φ0 and v0 = 4φ2
0. Assume

max
i∈[1,...,n]

|XT
i β0| ≤ K0,

for some constant K0 > 0. Then, for Poisson regression models, we have

E exp(|Yi − exp(XT
i β0)|) ≤ E exp(|Yi|+ | exp(XT

i β0)|)
≤ E exp(2Yi) = exp

{
exp(XT

i β0) (exp(2)− 1)
}
≤ exp{exp(K0 + 2)},

where the second inequality follows by Jensen’s inequality. Condition (A3)
is thus satisfied.

S4.4. Discussion of Condition (A4). Condition (A4) is not restric-
tive at all. When the matrixC doesn’t vary with n, the condition λmax

(
(CCT )−1

)
=

O(1) is automatically satisfied since C is of full row rank.

APPENDIX S5: PROOFS

S5.1. Proof of Theorem 2.1. We focus on proving the statistical
properties of β̂0. Properties of β̂a can be similarly proven. We divide the
proof into three steps. In the first step, we show that there exists a local
maximizer β̂ of Qn(β) with the constraints CβM = t and β(M∪S)c = 0,

such that ‖β̂−β0‖2 = Op(
√

(s+m− r)/n). In the second step, we show β̂
is indeed a local maximizer of Qn(β) with the linear constraints CβM = t.
This implies β̂0 = β̂. In the final step, we show

√
n

(
β̂0,M − β0,M
β̂0,S − β0,S

)
=

1√
n
K−1/2
n (I − Pn)K−1/2

n

(
XT
M

XT
S

)
{Y − µ(Xβ0)}

−
√
nK−1/2

n PnK
−1/2
n

(
CT (CCT )−1hn

0

)
+ op(1).

Step 1: Define a p-dimensional vector β∗ as{
β∗M = β0,M −CT (CCT )−1hn,
β∗Mc = β0,Mc .
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It is immediate to see that

Cβ∗M − t = Cβ0,M −CCT (CCT )−1hn − t = hn − hn = 0.(S5.1)

Besides, it follows from Assumption (A4) that

‖β∗M∪S − β0,M∪S‖22(S5.2)

= ‖hTn (CCT )−1hn‖22 = O(‖hn‖22) = O

(
m+ s− r

n

)
.

Therefore, it suffices to show there exists a local maximizer β̂ of Qn(β) with
the constraints CβM = t and β(M∪S)c = 0, such that ‖β̂0,M∪S−β∗M∪S‖22 =
Op((m+ s− r)/n).

Observe that for any β withCβM = t, it follows from (S5.1) thatC(βM−
β∗M) = 0 and hence βM−β∗M belongs to the null space of C. We take a basis
matrix Z ∈ Rm×(m−r) of the null space C. This implies CZ = 0. Further
assume Z is orthogonalized such that ZTZ = Im−r where Iq stands for a
q × q identity matrix. Hence, for any βM such that CβM = t, there exists
some (m − r)-dimensional vector ν such that βM − β∗M = Zν. For any
δ ∈ Rm−r+s, we define Qn(δ) = Qn(β(δ)) where β(δ) is defined as

β(δ)M = β∗M +ZδJ0 ,
β(δ)S = β0,S + δJc0 ,

β(δ)(M∪S)c = β0,M∪Sc ,

where J0 = [1, 2, . . . ,m−r]. Since ‖ZδJ0‖22 = ‖δJ0‖22, it suffices to show that
there exists a local maximizer δ0 ofQn(δ) such that ‖δ0‖2 = Op(

√
(s+m− r)/n).

Define Nτ = {δ : ‖δ‖2 = τ}, and

Hn =

{
Qn(0) > max

δ∈∂Nτ
Qn(δ)

}
,

where ∂Nτ denotes the boundary of Nτ . Clearly, on the event Hn, there
exists a local maximizer δ in Nτ . Hence, it suffices to show Pr(Hn) → 1 as
n→∞ and some sufficiently large τ .

For any δ, it follows from a second order Taylor’s expansion that

Qn(δ)−Qn(0) = δTv − 1

2
δTDδ,(S5.3)

where

v =
1

n

(
ZTXT

M
XT
S

)
{Y − µ(Xβ∗)} −

(
0m−r

λn,0ρ̄(β∗S)

)
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and

D =
1

n

(
ZTXT

M
XT
S

)
Σ(Xβ∗∗)

(
ZTXT

M
XT
S

)T
−
(
O(m−r)×(m−r) O(m−r)×s
Os×(m−r) Λ∗

)
,

where β∗∗ lies in the line segment jointing β(δ) and β∗, and Λ∗ is a diagonal
matrix with nonnegative diagonal elements. By the definition of β∗ and β(δ),
we have β∗∗(M∪S)c = 0. Moreover, it follows from (S5.2) and ‖β(δ)− β∗‖2 =

τ
√

(m+ s− r)/n that

‖β∗∗ − β0‖2 ≤ τ
√

(s+m− r)/n+O(
√

(s+m− r)/n)

� τ
√

(s+m− r)/n+
1

2

√
(s+m) log(n)/n.

Therefore, for sufficiently large n and any τ ≤
√

log n/2, we have β∗∗ ∈ N0.
By Condition (A2), the maximum eigenvalue of Λ∗ is upper bounded by
λnκ0. Let

L =

(
Z Om×s

Os×(m−r) Is

)
,

for any δ ∈ Rm+s−r, we have ‖Lδ‖2 = ‖δ‖2. Observe that

1

n

(
ZTXT

M
XT
S

)
Σ(Xβ∗∗)

(
ZTXT

M
XT
S

)T
=

1

n
LT
(
XT
M

XT
S

)
Σ(Xβ∗∗)

(
XT
M

XT
S

)T
L.

Hence, for any δ ∈ Rm+s−r with ‖δ‖2 = 1, we have

1

n
δT
(
ZTXT

M
XT
S

)
Σ(Xβ∗∗)

(
ZTXT

M
XT
S

)T
δ

≥ ‖Lδ‖22λmin

{
1

n

(
XT
M

XT
S

)
Σ(Xβ∗∗)

(
XT
M

XT
S

)T}

= λmin

{
1

n

(
XT
M

XT
S

)
Σ(Xβ∗∗)

(
XT
M

XT
S

)T}
≥ c,

where the last inequality is due to Condition (A1). Since λnκ0 = o(1), we
have λmin(D) ≥ c̄ for some constant c̄ and sufficiently large n. Therefore, it
follows from (S5.3) that

sup
δ∈Nτ

Qn(δ)−Qn(0) ≤ sup
δ∈Nτ

(
‖δ‖2‖v‖2 −

c̄

2
‖δ‖22

)
= τ‖v‖2

√
m+ s− r

n
− c̄τ2

2

(m+ s− r)
n

.
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By Markov’s inequality, for any fixed τ > 0 and sufficiently large n, we have

Pr(Hn) = Pr

(
‖v‖2 < c̄τ

√
m+ s− r

n

)
= 1− nE‖v‖22

(m+ s− r)c̄2τ2
.(S5.4)

Assume we can show

E‖v‖22 = O

(
m+ s− r

n

)
.(S5.5)

Let τ → ∞, it follows from (S5.4) that Pr(Hn) → 1 and the proof is hence
completed. It remains to show (S5.5).

By the definition of v, it follows from Cauchy-Schwarz inequality that

E‖v‖22 ≤ 2‖λn,0ρ̄(β∗S)‖22 + 2E

∥∥∥∥ 1

n

(
ZTXT

M
XT
S

)
{Y − µ(Xβ∗)}

∥∥∥∥2

2

= 2‖λn,0ρ̄(β∗S)‖22

+
2

n2
tr

[
E

{(
ZTXT

M
XT
S

)
{Y − µ(Xβ∗)}{Y − µ(Xβ∗)}T

(
ZTXT

M
XT
S

)T}]

= 2‖λn,0ρ̄(β∗S)‖22 +
2φ0

n2
tr

{(
ZTXT

M
XT
S

)
Σ(Xβ0)

(
ZTXT

M
XT
S

)T}

+
2

n2
tr

{(
ZTXT

M
XT
S

)
{µ(Xβ0)− µ(Xβ∗)}{µ(Xβ0)− µ(Xβ∗)}T

(
ZTXT

M
XT
S

)T}
∆
= 2I0 + 2I1 + 2I2,

where tr denotes the trace of a matrix. Observe that β∗S = β0,S . It follows
from the monotonicity of ρ, the definition of dn, and Condition (A2) that

I0 ≤ s{λn,0ρ′(dn)}2 = o

(
1

n

)
.

Besides,

I1 ≤ φ0(m+ s− r)
n2

λmax

{(
ZTXT

M
XT
S

)
Σ(Xβ0)

(
ZTXT

M
XT
S

)T}

=
φ0(m+ s− r)

n2
λmax

{
LT
(
XT
M

XT
S

)
Σ(Xβ0)

(
XT
M

XT
S

)T
L

}

=
φ0(m+ s− r)

n2
λmax

{(
XT
M

XT
S

)
Σ(Xβ0)

(
XT
M

XT
S

)T}
= O

(
s+m− r

n

)
,
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where the last equality is due to Condition (A1).
To prove (S5.5), it remains to show I2 = O((m+ s− r)/n). A first order

Taylor expansion gives

µ(Xβ0)− µ(Xβ∗) =

∫ 1

0
Σ(X{β∗ + t(β0 − β∗)})dtX(β0 − β∗)

=

∫ 1

0
Σ(X{β∗ + t(β0 − β∗)})dtXMCT (CCT )−1hn.

Let N ∗0 = {β∗ + t(β0 − β∗) : ∀0 ≤ t ≤ 1}. By (S5.2), we have

sup
β∈N ∗0

‖β − β0‖2 = O

(√
s+m− r√

n

)
.

It follows from Cauchy-Schwarz inequality that∥∥∥∥( ZTXT
M

XT
S

)∫ 1

0
Σ(X{β∗ + t(β0 − β∗)})dtXM

∥∥∥∥2

2

≤ sup
β∈N ∗0

λmax

{(
ZTXT

M
XT
S

)
Σ(Xβ)

(
ZTXT

M
XT
S

)T}
× sup

β∈N ∗0
λmax

(
XT
MΣ(Xβ)XM

)
≤ sup
β∈N ∗0

{
λmax

(
XT
M∪SΣ(Xβ)XM∪S

)}2
.

By (A1), we have

λmax

(
XT
M∪SΣ(Xβ0)XM∪S

)
= O(n).(S5.6)

Besides, it follows from Taylor’s theorem that

sup
β∈N ∗0

sup
a∈Rs+m
‖a‖2=1

∣∣aTXT
M∪SΣ(Xβ)XM∪Sa− aTXT

M∪SΣ(Xβ0)XM∪Sa
∣∣

≤ sup
β∈N ∗0

sup
a∈Rs+m
‖a‖2=1

∑
j∈M∪S

∣∣aTXT
M∪Sdiag{|Xj | ◦ |b′′′(Xβ∗∗)|}XM∪Sa

∣∣ |β0,j − βj |,

for some β∗∗ lying on the line segment joining β0 and β. For any β ∈ N ∗0 ,
we have β∗∗ ∈ N ∗0 . Therefore,

sup
β∈N ∗0

sup
a∈Rs+m
‖a‖2=1

∣∣aTXT
M∪SΣ(Xβ)XM∪Sa− aTXT

M∪SΣ(Xβ0)XM∪Sa
∣∣

≤ sup
β∈N ∗0

sup
a∈Rs+m
‖a‖2=1

∑
j∈M∪S

∣∣aTXT
M∪Sdiag{|Xj | ◦ |b′′′(Xβ)|}XM∪Sa

∣∣ |β0,j − βj |

≤ O(1)n sup
β∈N ∗0

∑
j

|β0,j − βj | = O
(√
n(s+m)

)
= O(n),
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where O(1) denotes a positive constant, the second inequality is due to
Condition (A1), the first equality follows by the definition of N ∗0 , and the
last equality is due to the condition that max(s,m) = o(n1/2). Combining
this together with (S5.6), we have

sup
β∈N ∗0

λmax

(
XT
M∪SΣ(Xβ)XM∪S

)
(S5.7)

= sup
β∈N ∗0

sup
a∈Rs+m
‖a‖2=1

∣∣aTXT
M∪SΣ(Xβ)XM∪Sa

∣∣
≤ sup

β∈N ∗0
sup

a∈Rs+m
‖a‖2=1

∣∣aTXT
M∪SΣ(Xβ)XM∪Sa− aTXT

M∪SΣ(Xβ0)XM∪Sa
∣∣

+ sup
a∈Rs+m
‖a‖2=1

∣∣aTXT
M∪SΣ(Xβ0)XM∪Sa

∣∣ = O(n),

and hence

sup
β∈N ∗0

{
λmax

(
XT
M∪SΣ(Xβ)XM∪S

)}2
= O(n2).

Using Cauchy-Schwarz inequality again, we obtain

I2 ≤ 1

n2
sup
β∈N ∗0

∥∥∥∥( ZTXT
M

XT
S

)
Σ(Xβ)XM

∥∥∥∥2

2

‖CT (CCT )−1hn‖22

= O(‖CT (CCT )−1hn‖22) = O(h2
n) = O((s+m− r)/n),

by Conditions (A4). This completes the proof for the first step.

Step 2: In this step, we show that with probability tending to 1, the local
maximizer β̂ of Qn(β) with the constraints CβM = t and β(M∪S)c = 0 is
indeed a local maximizer of Qn(β) with the linear constraints CβM = t.
This implies β̂0 = β̂. From the proof in the first step, we have shown that
with probability at least 1− 1/τ2,

‖β̂M∪S − β0,M∪S‖2 ≤ c̄τ

(√
s+m− r

n

)
, β̂(M∪S)c = 0,(S5.8)

for some constant c̄ > 0 and any 0 < τ ≤
√

log n/2.
Similar to the proof of Theorem 1 in Fan and Lv (2011), it suffices to

show with probability tending to 1, we have

‖XT
(M∪S)c{Y − µ(Xβ̂)}‖∞ < nλn,0ρ

′(0+),
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or

1

n
‖X(M∪S)T {Y − µ(Xβ̂)}‖∞ � λn,0.(S5.9)

Since β̂(M∪S)c = β0,(M∪S)c = 0, using a second-order Taylor expansion
around β0, we obtain for any j ∈ (M∪ S)c

(Xj)T {Y − µ(Xβ̂)} = (Xj)T {Y − µ(Xβ0)}(S5.10)

− (Xj)TΣ(Xβ0)XM∪S(β̂M∪S − β0,M∪S) +Rj ,

where the absolute value of each element in the remainder term Rj is
bounded by

max
j

(β̂M∪S − β0,M∪S)TXT
M∪Sdiag(|Xj | ◦ |b′′′(Xβ̄j)|)XM∪S(β̂M∪S − β0,M∪S),

for some β̄j lying on the line segment joining β0 and β̂. Under the event
defined in (S5.8), we have β̂ ∈ N0. Since β0 ∈ N0, we have β̄j ∈ N0.
Therefore, under the event defined in (S5.8), it follows from Condition (A1)
that

sup
j∈(M∪S)c

|Rj | ≤ c̄1τ
2(s+m)� c̄1τ

2
√
n(s+m),(S5.11)

where c̄1 is some positive constant and the last equality is due to that
max(s,m) = o(n1/2).

Besides, by Condition (A1) and (S5.8), there exists some constant c̄2 > 0
such that

‖XT
(M∪S)cΣ(Xβ0)XM∪S(β̂M∪S − β0,M∪S)‖∞(S5.12)

≤ ‖XT
(M∪S)cΣ(Xβ0)XM∪S‖2,∞‖β̂M∪S − β0,M∪S‖2 ≤ c̄2τ

√
n(s+m),

with probability at least 1− 1/τ2.
Moreover, it follows from the condition max1≤j≤p ‖Xj‖∞ = O(

√
n/ log(p)),

max1≤j≤p ‖Xj‖2 = O(
√
n) in (A1), Condition (A3) and Proposition 4 in Fan

and Lv (2011) that

max
j

Pr
(
|(Xj)T {Y − µ(Xβ0)}| > γ

√
n log p

)
≤ 2 exp

(
−1

2

γ2n log p

O(nv0) +O(
√
n/ log p)Mγ

√
n log p

)

≤ 2 exp

(
−1

2

γ2 log p

O(v0) +O(γM)

)
,
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where the constantsM and v0 are defined in Condition (A3). By Bonferroni’s
inequality, we have

(S5.13)

Pr

(
max
j
|XT

j {Y − µ(Xβ0)}| > γ
√
n log p

)
≤ 2 exp

(
−1

2

γ2 log p

O(v0 + γM)
+ log p

)
.

Since p → ∞, for sufficiently large γ, the RHS of (S5.13) converges to 0.
This implies we have with probability tending to 1,

‖XT
(M∪S)c{Y − µ(Xβ0)}‖∞ ≤ c̄3

√
n log p,(S5.14)

for some constant c̄3 > 0.
Let c̄4 = max(c̄1, c̄2, c̄3). Combining (S5.11), (S5.12) with (S5.14), we

obtain

Pr
(
‖XT

(M∪S)c{Y − µ(Xβ̂)}‖∞ ≤ c̄4

√
n log p+ c̄4(τ + τ2)

√
n(s+m)

)
≥ 1− 1

τ2
+ o(1).(S5.15)

By (A2), we have λn,0 � max(
√

log p,
√
s+m)/

√
n. Let τn to be any diverg-

ing sequence that τn �
√

log n and τn �
√
nλn,0/max(

√
log p,

√
s+m). By

(S5.15), we have

Pr
(
‖XT

(M∪S)c{Y − µ(Xβ̂)}‖∞ � λn,0

)
≥ 1− 1

τ2
n

+ o(1)→ 1.

Thus, we have with probability tending to 1, (S5.9) holds.

Step 3: We’ve shown that for any 0 < τ ≤
√

log n/2 and sufficiently large n,

Pr

{
‖β̂0,M∪S − β0,M∪S‖2 ≤ c̄τ

(
s+m− r

n

)}
≥ 1− 1

τ2
,(S5.16)

Pr
(
β̂0 ∈ N0

)
→ 1,(S5.17)

Cβ̂0,M = t.(S5.18)

Finally, we show that (S5.19) holds.

√
n

(
β̂0,M − β0,M
β̂0,S − β0,S

)
=

1√
n
K−1/2
n (I − Pn)K−1/2

n

(
XT
M

XT
S

)
{Y − µ(Xβ0)}

−
√
nK−1/2

n PnK
−1/2
n

(
CT (CCT )−1hn

0

)
+ op(1).(S5.19)
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Theorem 2.1 therefore follows.
In the first step, we have shown that β̂0 is the local maximizer of Qn(β)

with the constraints CβM = t, β(M∪S)c = 0. This implies that there exists
some vector ν ∈ Rr such that(

XT
M

XT
S

)
{Y − µ(XM∪Sβ̂0,M∪S)} =

( √
nCTν

nλnρ̄(β̂0,S)

)
.(S5.20)

Similar to (S5.10) and (S5.11), we can show that the left-hand side (LHS)
of (S5.20) is equal to(

XT
M

XT
S

)
{Y − µ(XM∪Sβ0,M∪S)}(S5.21)

−
(
XT
M

XT
S

)
Σ(Xβ0)

(
XT
M

XT
S

)T (
β̂0,M − β0,M
β̂0,S − β0,S

)
+R,

where the remainder term R satisfies ‖R‖∞ = Op(s+m). Hence we have

‖R‖2 = Op

(
(s+m)3/2

)
= op(

√
n),

under the conditions that s+m = o(n1/3). Recall that

Kn =
1

n

(
XT
M

XT
S

)
Σ(Xβ0)

(
XT
M

XT
S

)T
.

Under Condition (A1), we have lim infn λmin(Kn) > 0. This implies ‖K−1
n R‖2 =

op(
√
n). Combining this together with (S5.20) and (S5.21), we obtain

√
n

(
β̂0,M − β0,M
β̂0,S − β0,S

)
=

1√
n
K−1
n

(
XT
M

XT
S

)
{Y − µ(XM∪Sβ0,M∪S)}

− K−1
n

(
CTν√

nλnρ̄(β̂0,S)

)
+ op(1).(S5.22)

Besides, by (S5.16), it follows from Condition (A2) that ‖β̂0,S−β0,S‖∞ � dn
with probability tending to 1. This implies for sufficiently large n, we have
minj∈S |β̂0,j | > minj∈S |β0,j | − dn = dn. By the monotonicity of ρ′ and
Condition (A2), we obtain

|
√
nλnρ̄(β̂0,S)| ≤ s1/2|

√
nλnρ

′(dn)| = o(1),
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with probability tending to 1. This together with (S5.22) suggests that

√
n

(
β̂0,M − β0,M
β̂0,S − β0,S

)
=

1√
n
K−1
n

(
XT
M

XT
S

)
{Y − µ(XM∪Sβ0,M∪S)}

− K−1
n

(
CT

OT
r×s

)
ν + op(1).(S5.23)

Since Cβ0,M − t = hn, by (S5.18), we have C(β̂0,M − β0,M) = −hn.
Therefore, it follows from (S5.23) that(

CT

OT
r×s

)T
K−1
n

(
CT

OT
r×s

)
ν −
√
nhn(S5.24)

=
1√
n

(
CT

OT
r×s

)T
K−1
n

(
XT
M

XT
S

)
{Y − µ(XM∪Sβ0,M∪S)}+CR∗,

for some m-dimensional vector R∗ such that ‖R∗‖2 = op(1).
By definition, we have(

CT

OT
r×s

)T
K−1
n

(
CT

OT
r×s

)
= CTΩmmC.

Multiplying (CΩmmC
T )−1 on both sides of (S5.24), we have

ν =
1√
n

Ψ−1

(
CT

OT
r×s

)T
K−1
n

(
XT
M

XT
S

)
{Y − µ(XM∪Sβ0,M∪S)}

+ Ψ−1CR∗ +
√
nΨ−1hn,

where Ψ = CΩmmC
T . This together with (S5.23) yields

(S5.25)

√
n

(
β̂0,M − β0,M
β̂0,S − β0,S

)
=

1√
n
K−1
n

(
XT
M

XT
S

)
{Y − µ(XM∪Sβ0,M∪S)}

− 1√
n
K−1
n

(
CT

OT
r×s

)
Ψ−1

(
CT

OT
r×s

)T
K−1
n

(
XT
M

XT
S

)
{Y − µ(XM∪Sβ0,M∪S)}

−
√
nK−1

n

(
CT

OT
r×s

)
Ψ−1hn −K−1

n

(
CT

OT
r×s

)
Ψ−1CR∗ + op(1)

=
1√
n
K−1/2
n (I − Pn)K−1/2

n

(
XT
M

XT
S

)
{Y − µ(XM∪Sβ0,M∪S)}

−
√
nK−1

n

(
CT

OT
r×s

)
Ψ−1hn −K−1

n

(
CT

OT
r×s

)
Ψ−1CR∗ + op(1).
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In the following, we prove

K−1
n

(
CT

OT
r×s

)
Ψ−1CR∗ = ΩmmC

TΨ−1CR∗ = op(1).(S5.26)

Under Condition (A1), we have λmax(Kn) = O(1). This implies lim infn λmin(Ωn) >
0, or equivalently,

inf
a∈Rm+s:‖a‖2=1

lim inf
n

aTΩna > 0.

Hence, we have

inf
a∈Rm+s:‖a‖2=1,acJ0

=0
lim inf

n
aTΩna > 0,

where J0 = [1, . . . ,m]. Note that this implies

inf
a∈Rm+s:‖a‖2=1

lim inf
n

aTΩmma > 0.

Therefore, we obtain

lim inf
n

λmin(Ωmm) > 0.(S5.27)

Similarly, we can show

λmax(Ωmm) = O(1).(S5.28)

Using Cauchy-Schwarz inequality, we have

‖ΩmmC
T (CΩmmC

T )−1CR∗‖22
= ‖Ω1/2

mmΩ1/2
mmC

T (CΩmmC
T )−1CΩ1/2

mmΩ−1/2
mm R∗‖22

≤ ‖Ω1/2
mm‖22‖Ω1/2

mmC
T (CΩmmC

T )−1CΩ1/2
mm‖22‖Ω−1/2

mm ‖22‖R∗‖22
≤ λmax (Ωmm)λmax

(
Ω−1
mm

)
‖R∗‖22 = op(1),

by (S5.27) and (S5.28). This proves (S5.26). Hence, it follows from (S5.25)
that

√
n

(
β̂0,M − β0,M
β̂0,S − β0,S

)
=

1√
n
K−1/2
n (I − Pn)K−1/2

n

(
XT
M

XT
S

)
{Y − µ(Xβ0)}

−
√
nK−1

n

(
CT

OT
r×s

)
Ψ−1hn + op(1).(S5.29)
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Moreover, observe that

hn = CCT (CCT )−1hn =

(
CT

OT
r×s

)T (
CT (CCT )−1hn

0

)
.

Hence, we have

K−1
n

(
CT

OT
r×s

)
Ψ−1hn = K−1

n

(
CT

OT
r×s

)
Ψ−1

(
CT

OT
r×s

)T (
CT (CCT )−1hn

0

)
= K−1/2

n PnK
−1/2
n

(
CT (CCT )−1hn

0

)
.

This together with (S5.29) proves (S5.19).

Similarly, we can show β̂a satisfies (i) Pr(β̂a,(M∪S)c = 0)→ 1; (ii) ‖β̂a,M∪S−
β0,M∪S‖2 = Op(

√
(s+m)/n); (iii)

√
n

(
β̂a,M − β0,M
β̂a,S − β0,S

)
=

1√
n
K−1
n

(
XT
M

XT
S

)
{Y − µ(Xβ0)}+O

(
(s+m)3/2

√
n

)
+ Op

(
(ns)1/2λn,aρ

′(dn, λn,a)
)
.

Under the condition that max(s,m) = o(n1/3) and λn,aρ
′(dn, λn,a) = o(n−1/2(s+

m)−1/2) in (A2), we obtain

√
n

(
β̂a,M − β0,M
β̂a,S − β0,S

)
=

1√
n
K−1
n

(
XT
M

XT
S

)
{Y − µ(Xβ0)}+ op(1).

The proof is hence completed.

S5.2. Proof of Lemma S.1. Let Θ = Φ−1. It follows from the block
matrix inversion formula (Lemma S.9) that

Θ−1
{1}∪S,{1}∪S

= Φ{1}∪S,{1}∪S −Φ{1}∪S,({1}∪S)c(Φ({1}∪S)c,({1}∪S)c)
−1Φ({1}∪S)c,{1}∪S .

Observe that eT1,pΦ
−1e1,p = eT1,pΘe1,p = eT1,1+sΘ1∪{S},1∪{S}e1,1+s. Hence,

eT1,pΦ
−1e1,p = eT1,1+s{

Φ{1}∪S,{1}∪S −Φ{1}∪S,({1}∪S)c(Φ({1}∪S)c,({1}∪S)c)
−1Φ({1}∪S)c,{1}∪S

}−1
e1,1+s.



22 SHI, SONG, CHEN AND LI

With some calculation, we have

Φ{1}∪S,{1}∪S −Φ{1}∪S,({1}∪S)c(Φ({1}∪S)c,({1}∪S)c)
−1Φ({1}∪S)c,{1}∪S

=

(
Φ{1},{1} ΦT

S,{1}
ΦS,{1} ΦS,S

)
−
(

Φ{1},({1}∪S)c

ΦS,({1}∪S)c

)
Φ−1

({1}∪S)c,({1}∪S)c

(
Φ{1},({1}∪S)c

ΦS,({1}∪S)c

)T
=

(
K11 KT

21

K21 K22

)
,

where

K11 = Φ{1},{1} −Φ{1},({1}∪S)c(Φ({1}∪S)c,({1}∪S)c)
−1ΦT

{1},({1}∪S)c ,

K21 = ΦS,{1} −ΦS,({1}∪S)c(Φ({1}∪S)c,({1}∪S)c)
−1Φ({1}∪S)c,{1},

K22 = ΦS,S −ΦS,({1}∪S)c(Φ({1}∪S)c,({1}∪S)c)
−1Φ({1}∪S)c,S .

By Lemma S.9, we have

eT1,pΦ
−1e1,p = (K11 −KT

21K
−1
22 K21)−1.

Similarly we have

eT1,1+s(Φ{1}∪S,{1}∪S)−1e1,1+s = K−1
11 .

Therefore, to show eT1,pΦ
−1e1,p ≥ eT1,1+s(Φ{1}∪S,{1}∪S)−1e1,1+s, it suffices to

show K11 ≥ K11 −KT
21K

−1
22 K21. However, this is immediate to see since

K22 is positive definite. Besides, the equality holds if and only if K21 = 0,
or equivalently

ΦS,{1} = ΦS,({1}∪S)c(Φ({1}∪S)c,({1}∪S)c)
−1Φ({1}∪S)c,{1}.

This completes the proof.

S5.3. Proof of Lemma S.2. To prove Lemma S.2, we need to show

Pr

(
max

1≤j≤p
‖Xj‖∞ = O

(√
n/ log(p)

))
→ 1,(S5.30)

Pr

(
max

1≤j≤p
‖Xj‖2 = O(

√
n)

)
→ 1,(S5.31)

Pr
(
λmin

(
XT
S∪MXS∪M

)
≥ cn

)
→ 1,(S5.32)

Pr
(
λmax

(
XT
S∪MXS∪M

)
= O(n)

)
→ 1,(S5.33)

Pr
(
‖XT

(S∪M)cXS∪M‖2,∞ = O(n)
)
→ 1,(S5.34)

Pr

(
max

1≤j≤p
λmax

{
XT
S∪Mdiag(|Xj |)XS∪M

}
= O(n)

)
→ 1,(S5.35)
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for some constant c > 0.
Under the given conditions, we have

max
1≤j≤p

‖Xj‖∞ ≤ ω0 and max
1≤j≤p

‖Xj‖2 ≤ ω0

√
n.

Since log p = O(na) for some 0 < a < 1, we have log p = o(n). This proves
(S5.30) and (S5.31).

Note that

1

n
λmin

(
XT
S∪MXS∪M

)
=

1

n
inf

a∈Rs+m
‖a‖2=1

aTXT
S∪MXS∪Ma ≥ inf

a∈Rs+m
‖a‖2=1

aTΛS∪M,S∪Ma

−

∣∣∣∣∣∣∣ sup
a∈Rs+m
‖a‖2=1

aT
(

1

n
Xi,S∪MX

T
i,S∪M −ΛS∪M,S∪M

)
a

∣∣∣∣∣∣∣
≥ c̄−

∥∥∥∥ 1

n
Xi,S∪MX

T
i,S∪M −ΛS∪M,S∪M

∥∥∥∥
2

≥ c̄−
∥∥∥∥ 1

n
Xi,S∪MX

T
i,S∪M −ΛS∪M,S∪M

∥∥∥∥
∞
,(S5.36)

where the third inequality follows by Lemma S.5 and the condition that
λmin(ΛS∪M,S∪M) ≥ c̄, the last inequality is due to Lemma S.8.

For any j1, j2 ∈ S ∪M, we have

E exp(|Xi,j1Xi,j2 −Λj1,j2 |)− 1− |Xi,j1Xi,j2 −Λj1,j2 |
≤ E exp(|Xi,j1Xi,j2 −Λj1,j2 |) ≤ E exp(2|Xi,j1Xi,j2 |) ≤ exp(2ω2

0),

where the second inequality is due to Jensen’s inequality. Similar to (S5.13),
we can show

Pr

(
max

j1,j2∈S∪M

∣∣∣∣∣ 1n
n∑
i=1

Xi,j1Xi,j2 −Λj1,j2

∣∣∣∣∣ > γ

√
log n√
n

)

≤ 2 exp

(
−1

2

γ2 log n

exp(2ω2
0) + γ

√
n log p

+ 2 log(s+m)

)
.

Since s+m = o(n), we can show for sufficiently large γ that

Pr

(
max

j1,j2∈S∪M

∣∣∣∣∣ 1n
n∑
i=1

Xi,j1Xi,j2 −Λj1,j2

∣∣∣∣∣ > γ

√
log n√
n

)
→ 0.(S5.37)
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This further implies

Pr

(
max

j1,j2∈S∪M

∥∥∥∥∥ 1

n

n∑
i=1

Xi,j1Xi,j2 −Λj1,j2

∥∥∥∥∥
∞

> γ(s+m)

√
log n√
n

)
→ 0.

Under the given conditions, we have (s+m)
√

log n = o(
√
n). Hence, we have

for sufficiently large n,

Pr

(
max

j1,j2∈S∪M

∥∥∥∥∥ 1

n

n∑
i=1

Xi,j1Xi,j2 −Λj1,j2

∥∥∥∥∥
∞

>
c̄

2

)
→ 0.

This together with (S5.36) implies that

Pr

{
1

n
λmin

(
XT
S∪MXS∪M

)
>
c̄

2

}
→ 1.(S5.38)

(S5.32) is hence proven. Similarly, we can show (S5.33) holds.
By condition, we have λmax(ΛS∪M,S∪M) = O(1). It then follows from

Cauchy-Schwarz inequality that

sup
a∈Rs+m
‖a‖2≤1

∣∣EX0,jX
T
0,S∪Ma

∣∣ ≤ sup
a∈Rs+m
‖a‖2≤1

√
EX2

0,j

√
E(XT

0,S∪Ma)2

≤ ω2
0 sup
a∈Rs+m
‖a‖2≤1

aTΛS∪M,S∪Ma = O(ω2
0).

This implies ∥∥EX0,(S∪M)cX
T
0,S∪M

∥∥
2,∞ = O(1).(S5.39)

Similar to (S5.37), we can show

Pr

(
max

1≤j1≤p,j2∈S∪M

∣∣∣∣∣
n∑
i=1

Xi,j1Xi,j2 − nEX0,j1X0,j2

∣∣∣∣∣ > γ
√
n log p

)
→ 0,

for some constant γ > 0. This further implies that

(S5.40)

Pr

∥∥∥∥∥
n∑
i=1

Xi,(S∪M)cXi,S∪M − nX0,(S∪M)cX0,S∪M

∥∥∥∥∥
2,∞

> γ
√

(s+m)n log p

→ 0.
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Under the given conditions, we have
√

(s+m)n log p = O(n). This together
with (S5.39) implies that

Pr

∥∥∥∥∥
n∑
i=1

Xi,(S∪M)cXi,S∪M

∥∥∥∥∥
2,∞

= O(n)

→ 1.

(S5.34) is hence proven.
Finally, note that

max
1≤j≤p

λmax

(
XT
S∪Mdiag{|Xj |}XS∪M

)
≤ ω0λmax

(
XT
S∪MXS∪M

)
.

By (S5.33), we have

Pr

(
max

1≤j≤p
λmax

(
XT
S∪Mdiag{|Xj |}XS∪M

)
= O(n)

)
→ 1.

This proves (S5.35). The proof is hence completed.

S5.4. Proof of Lemma S.3. It suffices to show (S5.30)-(S5.35) hold.
By Bonferroni’s inequality, Markov’s inequality and the definition of the
Orlicz norm, we have

Pr

(
max

1≤i≤n,1≤j≤p
|Xi,j | >

√
2ω0

√
log p+ log n

)
≤ np max

1≤i≤n,1≤j≤p
Pr(|Xi,j | >

√
2ω0

√
log p+ log n)

≤ npE
exp(Xi,j |2/ω2

0)

exp
(
2ω2

0(log p+ log n)/ω2
0

) ≤ 2np

exp (log(np)2)
=

2

np
→ 0.

Therefore,

Pr

(
max

1≤i≤n,1≤j≤p
|Xi,j | = O(

√
log p+ log n)

)
→ 1.(S5.41)

Under the given conditions, we have log p + log n = O(n/(log p)). This to-
gether with (S5.41) yields (S5.30).

By the definition of the Orlicz norm, we have

max
1≤j≤p

EX2
0,j ≤ max

1≤j≤p
‖X2

0,j‖ψ1 = max
1≤j≤p

‖X0,j‖2ψ2
≤ ω2

0.(S5.42)
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Besides, it follows from the Bernstein’s inequality (see Lemma G.3 in Shi
et al., 2017) and Bonferroni’s inequality that

Pr

(
p

max
j=1

∣∣∣∣∣
n∑
i=1

X2
i,j − nEX2

0,j

∣∣∣∣∣ ≤ γ√n log p

)

≤
p

max
j=1

pPr

(∣∣∣∣∣
n∑
i=1

X2
i,j − nEX2

0,j

∣∣∣∣∣ ≤ γ√n log p

)
→ 1,

for some constant γ > 0. Under the given conditions, this implies that

Pr

(
p

max
j=1

∣∣∣∣∣
n∑
i=1

X2
i,j − nEX2

0,j

∣∣∣∣∣ ≤ γn
)
→ 1.

Combining this together with (S5.42) yields (S5.31).
It follows from Lemma C.1 in Shi et al. (2017) that we have with proba-

bility tending to 1,

sup
a∈Rs+m
‖a‖2=1

∣∣∣∣∣ 1n
n∑
i=1

(aTXi,S∪M)2 − aTΛS∪M,S∪Ma

∣∣∣∣∣ = O

(√
s log n√
n

)
.(S5.43)

Note that the RHS of (S5.43) is o(1). By condition, λmin(ΛS∪M,S∪M) ≥ c̄.
Following the arguments in (S5.36), we have

Pr

(
λmin

(
1

n

n∑
i=1

Xi,S∪MX
T
i,S∪M

)
≥ c̄

2

)
→ 1.

This proves (S5.32). Similarly, we can show (S5.33) holds.
Similar to (S5.42), we can show

sup
a∈Rs+m,‖a‖2≤1

E|aTX0,S∪M|22 ≤ sup
a∈Rs+m,‖a‖2≤1

‖aTX0,S∪M‖2ψ2
≤ ω2

0.

Hence, we have

λmax (ΛS∪M,S∪M) = O(1).

Using similar arguments in (S5.39) and (S5.40), we can show (S5.34) holds.
Finally, by (S5.42), we have

max
1≤j≤p

‖X0,j‖ψ1 ≤ max
1≤j≤p

‖X0,j‖ψ2/
√

log 2 ≤ ω0/
√

log 2.

As a result, (S5.35) is directly implies by Lemma C.2 in Shi et al. (2017).
This completes the proof.
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APPENDIX S6: TECHNICAL LEMMAS

Lemma S.4. Let Ŝ0 = {j ∈Mc : β̂0,j 6= 0}. Suppose that β̂0 satisfies the
following conditions. There exists some vector ν ∈ Rr such that

XT
M(Y − µ(X

Ŝ∪Mβ̂0,Ŝ∪M)) = CTν,(S6.1)

Cβ̂0,M = t,(S6.2)

XT
Ŝ

(Y − µ(X
Ŝ∪Mβ̂0,Ŝ∪M)) = nρ̄(β̂

0,Ŝ
, λn,0),(S6.3) ∥∥∥XT

(Ŝ∪M)c
{Y − µ(Xβ̂0)}

∥∥∥
∞
< λn,0ρ

′(0+).(S6.4)

Furthermore, for any basis matrix Z ∈ Rm×(m−r) for the null space of C,
(S6.5)

λmin

{(
ZTXT

M
XT
Ŝ

)
Σ(Xβ̂0)

(
ZTXT

M
XT
Ŝ

)T}
> nλn,0κ(ρ, β̂

0,Ŝ
, λn,0).

Then β̂0 is a local maximizer of Qn(β, λn,0) with the constraint Cβ0,M = t.

Remark S6.1. Note that solving (2.2) is equivalent to maximizing the
following unconstrained problem:

arg max
β,ν

=

 1

n

n∑
i=1

{YiβTXi − b(βTXi)} −
∑
j /∈M

pλn,0(|βj |)− νT (CβM − t)

 .

Conditions (S6.1), (S6.2), (S6.3) and (S6.5) in Lemma S.4 guarantee that β̂0

is a local optimum to (2.2) when constrained on the subspace {β : β
(Ŝ∪M)c

=

0} of Rp. Condition (S6.4) ensures that β̂0 is indeed a local maximizer of
(2.2) with the linear constraints.

Proof: We first show (S6.1), (S6.2), (S6.3) and (S6.5) guarantee that β̂0

is a local maximizer of Qn(β, λn,0) subject to CβM = t when constrained
on the subspace {β : β

(Ŝ∪M)c
= 0} of Rp. For simplicity, we assume ρ is

twice differentiable at |β̂0,j | for any j ∈ S. Since Z is a basis matrix for the
null space of C, the matrix

L =

(
Z Om×s

Os×m−r Is

)
is a basis matrix for the null space of (C Or×s). The local optimality of



28 SHI, SONG, CHEN AND LI

β̂
0,M∪Ŝ requires:

Cβ̂0,M = t,(S6.6)

∂Qn(β̂0, λn,0)

∂β
Ŝ

= 0,(S6.7)

∂Qn(β̂0, λn,0)

∂βM
= CTν,(S6.8)

λmin

LT
 −∂2Qn(β̂0,λn,0)

∂βM∂βTM
−∂2Qn(β̂0,λn,0)

∂βM∂βT
Ŝ

−∂2Qn(β̂0,λn,0)

∂β
Ŝ
∂βTM

−∂2Qn(β̂0,λn,0)

∂β
Ŝ
∂βT

Ŝ

L
 > 0.(S6.9)

It is immediate to see that, (S6.1), (S6.2) and (S6.3) directly imply (S6.6),
(S6.7) and (S6.8). In the following, we show that (S6.5) implies (S6.9). When
ρ is twice differentiable at |β̂0,j | for any j ∈ S, the matrix in the left-hand
side (LHS) of (S6.9) is equal to(

ZTXT
M

XT
Ŝ

)
Σ(Xβ̂0)

(
ZTXT

M
XT
Ŝ

)T

− nλn,0diag

0, · · · , 0︸ ︷︷ ︸
m

,−ρ′′(|β̂
0,Ŝ1
|), · · · ,−ρ′′(|β̂

0,Ŝs
|)

 ∆
= M1 −M2,

where Ŝj denotes the jth element in the set Ŝ. When ρ is not twice differ-
entiable, we can replace M2 by a diagonal matrix whose absolute value is
bounded by κ(ρ, β̂

0,Ŝ
, λn,0). Hence, LHS of (S6.9) is larger than λmin(M1)−

λmax(M2) ≥ λmin(M1)−nλnκ(ρ, β̂
0,Ŝ
, λn,0). Therefore, it follows from (S6.5)

that (S6.9) is satisfied.
Under Condition (S6.4), using similar arguments in the proof of Theorem

1 in Lv and Fan (2009) or the proof of Theorem 1 in Fan and Lv (2011),
we can show β̂0 is indeed a local maximizer of Qn(β, λn,0) with CβM = t.
This completes the proof.

Lemma S.5. For any symmetric matrix A ∈ Rq×q, we have

‖A‖2 = sup
a:‖a‖2=1

|aTAa|.

Proof: By Cauchy-Schwarz inequality, we have

sup
a:‖a‖2=1

|aTAa| ≤ sup
a:‖a‖2=1

‖a‖22‖A‖2 = ‖A‖2.
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Hence, we have shown supa:‖a‖2=1 |aTAa| ≤ ‖A‖2. It remains to show

‖A‖2 ≤ supa:‖a‖2=1 |aTAa|. Since A is symmetric, according to the eigen

decomposition theorem, we have A = UΛUT for some orthogonal matrix
U and diagonal matrix Λ = diag(λ1, . . . , λq). By definition, we have

‖A‖2 =
√
λmax(AAT ) =

√
λmax(Λ2) =

q
max
j=1
|λj |.(S6.10)

Assume U = (u1, . . . , uq). Since U is orthogonal, we have uTi uj = 0 when
i 6= j and uTj uj = 1. Hence, we have

sup
a:‖a‖2=1

|aTAa| ≥ max
j
|uTj UΛUTuj | = max

j
|λj |.

This together with (S6.10) implies that supa:‖a‖2=1 |aTAa| ≥ ‖A‖2. The
proof is hence completed.

Lemma S.6. Let X1, X2, . . . , Xn be independent m-dimensional ran-
dom vectors with EXj = 0,

∑
j cov(Xj) = Im, let Z denote an m-dimensional

multivariate normal vector with mean 0 and covariance matrix Im, then

sup
C

∣∣∣Pr
(∑

Xi ∈ C
)
− Pr(Z ∈ C)

∣∣∣ ≤ c0m
1/4
∑

E‖Xi‖32,

for some constant c0, where the supremum is taken for all convex subsets in
Rm.

Proof: This follows directly from Theorem 1 in Bentkus (2004).

Lemma S.7. Denoted by χ2(r, γ) a χ2 random variable with r degrees of
freedom and a non-centrality parameter γ. Then we have

lim
ε→0+

sup
r≥1,γ≥0

|Pr(χ2(r, γ) ≤ x+ rε)− Pr(χ2(r, γ) ≤ x− rε)| → 0.

Proof: It suffices to show

lim
ε→0+

sup
r≥1
|Pr(χ2(r, 0) ≤ x+ rε)− Pr(χ2(r, 0) ≤ x− rε)| → 0,(S6.11)
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since

|Pr(χ2(r, γ) ≤ x+ rε)− Pr(χ2(r, γ) ≤ x− rε)|

≤

∣∣∣∣∣
∞∑
k=0

exp(−γ/2)
(γ/2)k

k!
{Pr(χ2(r + 2k, 0) ≤ x+ rε)− Pr(χ2(r + 2k, 0) ≤ x− rε)}

∣∣∣∣∣
≤

∞∑
k=0

exp(−γ/2)
(γ/2)k

k!

∣∣Pr(χ2(r + 2k, 0) ≤ x+ rε)− Pr(χ2(r + 2k, 0) ≤ x− rε)
∣∣

≤ sup
r

∣∣Pr(χ2(r, 0) ≤ x+ rε)− Pr(χ2(r, 0) ≤ x− rε)
∣∣ .

Below, we show (S6.11) holds. We first prove

lim
ε→0+

sup
r≥2,x

|Pr(χ2(r, 0) ≤ x+ rε)− Pr(χ2(r, 0) ≤ x− rε)| → 0.(S6.12)

Note that (S6.12) holds when the probability density function fr of a χ2

distribution with r degrees of freedom satisfies supr≥2 supx rfr(x) = O(1).
By definition, we have

fr(x) =
1

2r/2Γ(r/2)
xr/2−1 exp(−x/2).

The supremum of fr is achieved at x = r − 2. For r = 2, obviously we have
supx 2|f2(x)| ≤ 2|f2(0)| = 1. For r ≥ 3, we have

sup
x,r≥3

|fr(x)| ≤ sup
r≥3

fr(r − 2) ≤ sup
r≥3

(r/2− 1)r/2−1

Γ(r/2)
exp(−r/2 + 1).(S6.13)

By Stirling’s formula, we have

Γ(r/2) ≥
√

2π
(r

2
− 1
)r/2−1/2

exp
(
−r

2
+ 1
)
,

which together with (S6.13) implies that

sup
x

sup
r≥3

r|fr(x)| ≤ r√
2π(r/2− 1)

≤ 3
√

2√
π
.

This proves (S6.12). It remains to show

lim
ε→0+

sup
x
|Pr(χ2(1, 0) ≤ x+ ε)− Pr(χ2(1, 0) ≤ x− ε)| → 0.(S6.14)
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For any ε > 0, there exists some δ > 0 such that Pr(χ2(1, 0) ≤ 2δ) ≤ ε.
Hence, for any x ≤ δ and any ε ≤ δ, we have

Pr(χ2(1, 0) ≤ x+ ε)− Pr(χ2(1, 0) ≤ x− ε)(S6.15)

≤ Pr(χ2(1, 0) ≤ 2δ) ≤ ε.

Moreover, f1(x) is continuous and monotonically decreasing on [δ,+∞). This
implies supx≥δ f1(x) ≤ f1(δ) and hence

sup
x≥δ
|Pr(χ2(1, 0) ≤ x+ ε)− Pr(χ2(1, 0) ≤ x− ε)| ≤ 2ε

f1(δ)
.

Therefore, for any x ≥ δ and any 0 < ε ≤ (2ε)/{f1(δ)}, we have

Pr(χ2(1, 0) ≤ x+ ε)− Pr(χ2(1, 0)(S6.16)

≤ x− ε) ≤ Pr(χ2(1, 0) ≤ 2δ) ≤ ε.

Equation (S6.14) now follows from (S6.15) and (S6.16). This completes the
proof.

Lemma S.8. For any symmetric matrix A, we have ‖A‖2 ≤ ‖A‖∞.

Proof : Note that ‖A‖2 ≤ ‖A‖∞‖A‖1. Since A is symmetric, we have
‖A‖∞ = ‖A‖1. This proves the assertion.

Lemma S.9 (Matrix inversion in block form). For any positive definite
matrix

Ψ =

(
Ψ11 Ψ12

Ψ21 Ψ22

)
,

denote its inverse matrix as Ω and partition it into Ω11, . . . ,Ω22 accordingly.
Then

Ω11 = (Ψ11 −Ψ12Ψ
−1
22 Ψ21)−1, Ω22 = (Ψ22 −Ψ21Ψ

−1
11 Ψ12)−1.

As a result, the matrices Ω11−Ψ−1
11 and Ω22−Ψ−1

22 are positive semidefinite.

APPENDIX S7: REAL DATA ANALYSIS

In this section, we apply our proposed testing procedures to the European
American single nucleotide polymorphisms (SNPs) data set (Price et al.,
2006), which consists of 488 European American samples. We use the height
phenotype (0/1, binary variable) of these European American samples as
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the response, and focus on finding variables that are associated with this
phenotype among a set of 277 SNPs. The genotype for each SNP is a cat-
egorical variable, coded as 0/1/2. We removed the outlier individuals as in
Price et al. (2006). This gives us a total of 361 observations. However, for
each observation, approximately 2% of SNPs are missing on average. We
imputed all the missing values using the R package missForest available
in CRAN. This package uses a random forest trained based on the observed
entries to predict those missing values.

To formulate the testing hypotheses, we adopt a data splitting procedure.
More specifically, we first randomly sample 20% of the observations and
perform some preliminary analysis based on these observations. Results are
given in Section S7.1 and we find 13 SNPs that are highly correlated with
the phenotype. Based on the remaining 80% of the observations, we focus
on testing whether the regression coefficients of these 13 variables are zero
using logistic regression. The p-values of the partial penalized Wald, score
and likelihood ratio statistics are 6.8 × 10−3, 7.4 × 10−3 and 7.0 × 10−3

respectively. Under the significance level of 0.05, we reject the null hypothesis
and conclude that at least one of the 13 regression coefficients is not equal
to zero.

Since each covariate Xj
i is discrete and takes value on {0, 1, 2}, we can

define the dummy variables Z
(j,1)
i = I(Xj

i = 1), Z
(j,2)
i = I(Xj

i = 2) and use
these Z(j,m)’s as covariates in our logistic regression model. This yields a
total of 554 covariates. Denoted by βj,m the corresponding regression coef-
ficient of Z(j,m), our next goal is to test the following hypothesis based on
the remaining 80% of the samples:

H0 : 2βj,1 = βj,2, ∀j ∈M,

whereM denotes the set of the 13 SNPs selected in the preliminary analysis.
Under H0, we have βj,1X

j = βj,1Z
(j,1) + βj,2Z

(j,2) for any j ∈ M. This
corresponds to a lack of fit test regarding these important variables. The
p-values of the Wald, score and likelihood ratio statistics are 0.083, 0.069
and 0.086 respectively. Hence, we fail to reject H0.

S7.1. Preliminary analysis in the real data application. We ap-
ply sure independence screening (Fan and Song, 2010) across all 277 vari-
ables. Specifically, we independently fit 277 logistic regressions by maximiz-
ing the marginal likelihood with the response and each univariate covariate
and obtain the p-values from each marginal model. We find out there are
a total of 13 variables with p-values smaller than 0.05. We report these
variables and their associated p-values in the table below.



33

SNP 22 50 68 126 134 138 141 151 152 187 199 260 272

p-value (%) 0.4 3.5 4.2 1.9 4.0 4.8 4.3 4.6 3.5 4.1 4.5 3.9 1.8

APPENDIX S8: ADDITIONAL SIMULATION RESULTS

S8.1. Simulations results for Poisson regression. We consider Pois-
son regression in this section. The data were generated from the following
model,

Pr(Yi = k|Xi) =
exp(−λi)λki

k!
,

where

λi = exp
(

0.75X
(1)
i − (0.75 + h(1))X

(2)
i + h(2)(X

(3)
i +X

(4)
i )
)
,

and Xi
iid∼ N(0,Σ) for some p×p covariance matrix Σ. Consider testing the

following hypotheses:

H
(1)
0 : β1,0 + β2,0 = 0, v.s H(1)

a : β1,0 + β2,0 6= 0

H
(2)
0 : β3,0 = β4,0 = 0, v.s H(2)

a : β3,0 6= 0 or β4,0 6= 0.

We set h(2) = 0 when testing H
(1)
0 , and set h(1) = 0 when testing H

(2)
0 . We

use the following four settings: (i) p = 50,Σ = Ip; (ii) p = 200,Σ = Ip; (iii)
p = 50,Σ = {0.5|i−j|}; (iiii) p = 200,Σ = {0.5|i−j|}. For each setting, we

set h(j) = 0, 0.03, 0.06, 0.12 when testing H
(j)
0 . The sample size is set to be

500. We provide the rejection probabilities for H
(1)
0 and H

(2)
0 in Table S7.

The kernel density estimates of three test statistics under H
(1)
0 and H

(2)
0 are

plotted in Figure S7 and Figure S8.
It can be seen that the Type-I error rates are well controlled under the

null hypotheses, and the powers increase as h(1) or h(2) increases.

S8.2. Tables and plots.
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Fig S1. Kernel density plot of three test statistics under H
(1)
0 with different combinations

of p and the covariance matrices. TL, TW and TS from left to right. p = 50,Σ = Ip and
p = 200,Σ = Ip and p = 50,Σ = {0.5|i−j|}i,j and p = 200,Σ = {0.5|i−j|}i,j from top
to bottom. The black line plot the density function of a χ2 distribution with 1 degree of
freedom.
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Fig S2. Kernel density plot of three test statistics under H
(2)
0 with different combinations

of p and the covariance matrices. TL, TW and TS from left to right. p = 50,Σ = Ip and
p = 200,Σ = Ip and p = 50,Σ = {0.5|i−j|}i,j and p = 200,Σ = {0.5|i−j|}i,j from top
to bottom. The black line plot the density function of a χ2 distribution with 1 degree of
freedom.
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Fig S3. Kernel density plot of three test statistics under H
(2)
0 with different combinations

of p and the covariance matrices. TL, TW and TS from left to right. p = 50,Σ = Ip and
p = 200,Σ = Ip and p = 50,Σ = {0.5|i−j|}i,j and p = 200,Σ = {0.5|i−j|}i,j from top
to bottom. The black line plot the density function of a χ2 distribution with 1 degree of
freedom.
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Table S1
Rejection probabilities (%) of the partial penalized Wald, score and likelihood ratio
statistics with standard errors in parenthesis (%), under the setting where Σ = I .

p = 50 p = 200

TL TW TS TL TW TS

h(1) H
(1)
0

0 3.50(0.75) 3.50(0.75) 3.50(0.75) 6.00(0.97) 6.00(0.97) 6.00(0.97)
0.1 10.33(1.24) 10.33(1.24) 10.33(1.24) 9.17(1.18) 9.17(1.18) 9.17(1.18)
0.2 26.67(1.81) 26.67(1.81) 26.67(1.81) 32.00(1.90) 32.00(1.90) 32.00(1.90)
0.4 83.17(1.53) 83.17(1.53) 83.33(1.52) 78.83(1.67) 78.83(1.67) 78.83(1.67)

h(2) H
(2)
0

0 4.67(0.86) 4.67(0.86) 4.83(0.88) 4.17(0.82) 4.17(0.82) 4.33(0.83)
0.1 13.50(1.40) 13.50(1.40) 13.67(1.40) 10.17(1.23) 10.17(1.23) 10.33(1.24)
0.2 32.83(1.92) 32.67(1.91) 32.83(1.92) 27.80(1.83) 28.80(1.83) 28.80(1.83)
0.4 80.50(1.62) 80.50(1.62) 80.50(1.62) 80.50(1.62) 80.67(1.61) 80.67(1.61)

h(2) H
(3)
0

0 5.00(0.89) 5.00(0.89) 5.17(0.90) 5.17(0.90) 5.17(0.90) 5.17(0.90)
0.1 10.83(1.27) 10.83(1.27) 11.00(1.28) 11.33(1.29) 11.33(1.29) 11.50(1.30)
0.2 28.67(1.85) 28.67(1.85) 28.83(1.85) 32.50(1.91) 32.50(1.91) 32.50(1.91)
0.4 80.67(1.61) 80.67(1.61) 80.67(1.61) 81.50(1.59) 81.50(1.59) 81.50(1.59)
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Table S2
Rejection probabilities (%) of the partial penalized Wald, score and likelihood ratio
statistics, the Wald test statistic based on the de-sparsified Lasso estimator and the
decorrelated score statistic under the settings where Σ = I, with standard errors in

parenthesis (%).

TL TW TS TDW TDS

h(1) H
(4)
0 and p = 50

0 6.33(0.99) 6.50(1.01) 6.67(1.02) 5.17(0.90) 6.50(1.01)
0.1 18.67(1.59) 18.67(1.59) 18.83(1.60) 14.00(1.42) 18.50(1.59)
0.2 50.83(2.04) 50.83(2.04) 51.00(2.04) 41.33(2.01) 51.83(2.04)
0.4 95.67(0.83) 95.67(0.83) 95.67(0.83) 93.83(0.98) 96.00(0.80)

H
(4)
0 and p = 200

0 5.67(0.94) 5.67(0.94) 5.83(0.96) 5.17(0.90) 7.33(1.06)
0.1 15.67(1.48) 15.67(1.48) 15.67(1.48) 14.00(1.42) 15.67(1.48)
0.2 49.33(2.04) 49.33(2.04) 49.33(2.04) 41.33(2.01) 51.00(2.04)
0.4 97.33(0.66) 97.33(0.66) 97.33(0.66) 93.83(0.98) 97.67(0.62)

h(2) H
(5)
0 and p = 50

0 6.33(0.99) 6.33(0.99) 6.50(1.00) 5.83(0.96) 6.50(1.01)
0.1 17.83(1.56) 17.83(1.56) 18.00(1.57) 14.17(1.42) 16.83(1.53)
0.2 53.00(2.04) 53.00(2.04) 53.00(2.04) 43.33(2.02) 52.17(2.04)
0.4 97.33(0.66) 97.33(0.66) 97.33(0.66) 95.17(0.88) 96.67(0.73)

H
(5)
0 and p = 200

0 4.00(0.80) 4.00(0.80) 4.00(0.80) 4.67(0.86) 3.17(0.71)
0.1 16.67(1.52) 16.67(1.52) 16.83(1.53) 13.67(1.40) 14.00(1.42)
0.2 49.17(2.04) 49.17(2.04) 49.17(2.04) 39.67(2.00) 43.17(2.02)
0.4 97.50(0.64) 97.50(0.64) 97.50(0.64) 92.50(1.08) 95.83(0.82)
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Table S3
Rejection probabilities (%) of the partial penalized Wald, score and likelihood ratio

statistics with standard errors in parenthesis (%), under the settings where Σ = I .

p = 50 p = 200

TL TW TS TL TW TS

h(1) H
(6)
0

0 5.50(0.93) 5.50(0.93) 5.67(0.93) 6.50(1.01) 6.50(1.01) 6.50(1.01)
0.2 15.00(1.46) 15.00(1.46) 15.67(1.46) 16.17(1.50) 16.17(1.50) 16.17(1.50)
0.4 50.33(2.04) 50.33(2.04) 50.50(2.04) 49.17(2.04) 49.17(2.04) 49.17(2.04)
0.8 97.50(0.64) 97.50(0.64) 97.50(0.64) 96.50(0.75) 96.50(0.75) 96.50(0.75)

h(1) H
(7)
0

0 5.00(0.89) 5.00(0.89) 5.17(0.90) 5.83(0.96) 5.83(0.96) 5.83(0.96)
0.2 9.33(1.19) 9.17(1.18) 9.50(1.20) 13.00(1.37) 13.00(1.37) 13.00(1.37)
0.4 30.00(1.87) 30.00(1.87) 30.17(1.87) 26.83(1.81) 26.83(1.81) 26.83(1.81)
0.8 76.33(1.74) 76.67(1.73) 76.67(1.73) 76.67(1.73) 76.67(1.73) 76.67(1.73)

h(1) H
(8)
0

0 4.83(0.88) 4.83(0.88) 5.00(0.89) 6.83(1.03) 6.83(1.03) 6.83(1.03)
0.2 8.83 (1.16) 8.67(1.15) 9.00(1.17) 10.33(1.24) 10.33(1.24) 10.33(1.24)
0.4 21.33(1.67) 21.33(1.67) 21.50(1.68) 20.50(1.65) 20.50(1.65) 20.50(1.65)
0.8 55.83(2.03) 56.17(2.03) 56.00(2.03) 58.33(2.01) 58.33(2.01) 58.33(2.01)
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Table S4
Rejection probabilities (%) of the partial penalized Wald, score and likelihood ratio

statistics with standard errors in parenthesis (%).

p = 50 p = 200

TL TW TS TL TW TS

h(1) H
(1)
0 and Σ = I

0 5.33(0.92) 5.17(0.90) 5.33(0.92) 6.00(0.97) 5.33(0.92) 6.00(0.97)
0.2 11.33(1.29) 10.17(1.23) 10.83(1.27) 13.67(1.40) 13.00(1.37) 13.50(1.40)
0.4 33.33(1.92) 32.00(1.90) 33.17(1.92) 38.83(1.99) 37.67(1.98) 38.67(1.99)
0.8 88.50(1.30) 88.67(1.29) 88.83(1.29) 88.83(1.29) 88.17(1.32) 88.67(1.29)

H
(1)
0 and Σ = {0.5|i−j|}

0 6.50(1.01) 6.00(0.97) 6.33(0.99) 4.50(0.85) 4.33(0.83) 4.33(0.83)
0.2 19.17(1.61) 18.67(1.59) 19.00(1.60) 21.00(1.67) 20.33(1.64) 20.67(1.65)
0.4 61.50(1.99) 61.17(1.99) 61.50(1.99) 62.00(1.98) 62.17(1.98) 62.00(1.98)
0.8 98.33(0.52) 99.67(0.24) 99.67(0.24) 98.50(0.50) 99.33(0.33) 99.33(0.33)

h(2) H
(2)
0 and Σ = I

0 6.17(0.98) 6.00(0.97) 5.83(0.96) 5.67(0.94) 5.50(0.93) 5.83(0.96)
0.2 7.83(1.10) 9.17(1.12) 9.17(1.12) 8.00(1.11) 10.17(1.23) 10.00(1.22)
0.4 23.50(1.73) 26.50(1.80) 26.67(1.81) 23.83(1.74) 26.67(1.81) 26.83(1.81)
0.8 71.00(1.85) 76.00(1.74) 75.50(1.76) 74.00(1.79) 77.67(1.70) 77.50(1.70)

H
(2)
0 and Σ = {0.5|i−j|}

0 5.67(0.94) 5.33(0.92) 5.67(0.94) 4.50(0.85) 4.17(0.82) 4.17(0.82)
0.2 11.17(1.29) 12.67(1.36) 12.67(1.36) 11.00(1.28) 12.50(1.35) 12.50(1.35)
0.4 31.17(1.89) 35.33(1.95) 35.17(1.95) 33.00(1.92) 35.83(1.96) 35.67(1.96)
0.8 84.50(1.48) 88.33(1.31) 88.33(1.33) 88.67(1.29) 90.17(1.22) 90.00(1.22)

h(2) H
(3)
0 and Σ = I

0 4.17(0.82) 3.67(0.77) 3.67(0.77) 6.17(0.98) 5.67(0.94) 5.83(0.96)
0.2 8.67(1.15) 8.83(1.13) 8.83(1.13) 14.50(1.44) 13.67(1.40) 14.17(1.42)
0.4 35.83(1.96) 34.17(1.94) 35.50(1.95) 39.50(2.00) 39.00(1.99) 39.17(1.99)
0.8 90.00(1.22) 89.00(1.28) 89.67(1.24) 90.17(1.22) 89.67(1.24) 90.00(1.22)

H
(3)
0 and Σ = {0.5|i−j|}

0 4.83 (0.88) 4.67(0.86) 4.67(0.86) 5.83(0.96) 5.33(0.92) 5.67(0.94)
0.2 18.00 (1.57) 17.00(1.53) 17.67(1.56) 18.50(1.59) 18.17(1.57) 18.33(1.58)
0.4 55.17 (2.03) 54.50(2.03) 55.00(2.03) 53.83(2.04) 53.33(2.04) 53.83(2.04)
0.8 98.33 (0.52) 99.00(0.41) 99.00(0.41) 98.50(0.50) 98.33(0.44) 98.33(0.44)
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Table S5
Rejection probabilities (%) of the partial penalized Wald, score and likelihood ratio
statistics, the Wald test statistic based on the de-sparsified Lasso estimator and the

decorrelated score statistic, with standard errors in parenthesis (%).

TL TW TS TDW TDS

h(1) H
(4)
0 , Σ = I and p = 50

0 4.83(0.86) 4.67(0.86) 4.67(0.86) 51.17(2.04) 7.33 (1.06)
0.2 12.50(1.35) 8.00(1.11) 8.33(1.12) 23.33(1.73) 18.67 (1.59)
0.4 27.17(1.82) 20.83(1.66) 21.33(1.67) 9.00(1.17) 37.17 (1.97)
0.8 77.00(1.72) 70.67(1.86) 71.83(1.84) 15.50(1.48) 82.67 (1.55)

H
(4)
0 , Σ = I and p = 200

0 4.17(0.82) 4.33(0.83) 4.33(0.83) 70.67(1.86) 8.83(1.16)
0.2 12.00(1.33) 9.17(1.18) 9.17(1.18) 43.17(2.02) 22.33(1.70)
0.4 31.17(1.89) 23.33(1.73) 24.33(1.75) 24.00(1.74) 46.67(2.04)
0.8 78.33(1.67) 70.83(1.86) 71.83(1.84) 15.00(1.46) 89.33(1.26)

H
(4)
0 , Σ = {0.5|i−j|} and p = 50

0 6.00(0.97) 5.33(0.92) 5.50(0.93) 31.00(1.89) 7.00(1.04)
0.2 13.50(1.40) 10.83(1.27) 11.17(1.29) 11.00(1.28) 14.67(1.44)
0.4 33.83(1.93) 28.17(1.84) 29.17(1.86) 8.00(1.11) 38.83(1.99)
0.8 82.50(1.55) 78.33(1.68) 78.67(1.67) 37.33(1.97) 89.33(1.26)

H
(4)
0 , Σ = {0.5|i−j|} and p = 200

0 4.33(0.83) 4.00(0.80) 4.00(0.80) 57.83(2.02) 7.50(1.08)
0.2 10.67(1.26) 8.00(1.11) 8.50(1.14) 27.83(1.83) 18.67(1.59)
0.4 32.00(1.90) 27.00(1.81) 27.33(1.82) 13.17(1.38) 47.50(2.04)
0.8 79.67(1.64) 75.17(1.76) 75.17(1.76) 23.67(1.73) 88.50(1.30)

h(2) H
(5)
0 , Σ = I and p = 50

0 5.33(0.92) 5.00(0.89) 5.17(0.90) 2.50(0.64) 4.17(0.82)
0.2 19.83(1.63) 19.33(1.61) 19.83(1.63) 9.83(1.22) 17.67(1.56)
0.4 62.50(1.98) 60.67(1.99) 61.83(1.98) 42.00(2.01) 60.33(2.00)
0.8 99.50(0.29) 99.50(0.29) 99.50(0.29) 97.50(0.64) 99.33(0.33)

H
(5)
0 , Σ = I and p = 200

0 5.00(0.89) 4.50(0.85) 4.83(0.88) 3.00(0.70) 3.00(0.70)
0.2 22.50(1.70) 21.83(1.69) 22.33(1.70) 13.17(1.38) 18.67(1.59)
0.4 64.00(1.96) 62.67(1.97) 63.67(1.96) 47.67(2.04) 58.17(2.01)
0.8 99.50(0.29) 99.67(0.24) 99.67(0.24) 98.00(0.57) 99.17(0.37)

H
(5)
0 , Σ = {0.5|i−j|} and p = 50

0 5.50(0.93) 4.83(0.88) 5.50(0.93) 3.67(0.77) 3.00(0.70)
0.2 21.33(1.67) 20.83(1.66) 21.00(1.66) 8.00(1.11) 15.33(1.47)
0.4 63.33(1.97) 62.67(1.97) 63.50(1.97) 34.67(1.94) 53.00(2.04)
0.8 99.17(0.37) 99.83(0.17) 99.83(0.17) 95.17(0.88) 99.17(0.37)

H
(5)
0 , Σ = {0.5|i−j|} and p = 200

0 7.67(1.09) 7.17(1.05) 7.67(1.09) 5.50(0.93) 4.00(0.80)
0.2 22.00(1.66) 21.00(1.69) 21.83(1.66) 9.00(1.17) 15.50(1.48)
0.4 64.50(1.95) 64.00(1.96) 64.33(1.96) 31.67(1.90) 48.00(2.04)
0.8 99.00(0.41) 99.50(0.29) 99.50(0.29) 94.33(0.94) 97.50(0.64)
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Table S6
Rejection probabilities (%) of the partial penalized Wald, score and likelihood ratio

statistics with standard errors in parenthesis (%).

p = 50 p = 200

TL TW TS TL TW TS

h(1) H
(6)
0 and Σ = I

0 5.67(0.94) 5.17(0.90) 5.50(0.93) 5.17(0.90) 4.83(0.88) 5.17(0.90)
0.4 19.17(1.61) 18.67(1.59) 19.17(1.61) 21.50(1.68) 21.00(1.66) 21.33(1.67)
0.8 61.50(1.99) 61.17(1.99) 61.33(1.99) 59.00(2.01) 57.50(2.02) 58.83(2.01)
1.6 97.67(0.62) 97.83(0.59) 97.83(0.59) 98.00(0.57) 98.00(0.57) 98.17(0.55)

H
(6)
0 and Σ = {0.5|i−j|}

0 4.33(0.83) 3.83(0.78) 4.33(0.80) 4.83(0.88) 4.67(0.86) 4.83(0.88)
0.4 45.33(2.03) 44.67(2.03) 45.17(2.03) 45.50(2.03) 44.33(2.03) 45.00(2.03)
0.8 93.50(1.01) 94.00(0.97) 94.17(0.96) 93.00(1.04) 92.67(1.06) 93.00(1.04)
1.6 100.00(0.00) 100.00(0.00) 100.00(0.00) 100.00(0.00) 100.00(0.00) 100.00(0.00)

h(1) H
(7)
0 and Σ = I

0 5.83(0.96) 5.67(0.94) 5.83(0.96) 5.83(0.96) 5.17(0.90) 5.50(0.93)
0.4 15.33(1.47) 15.00(1.46) 15.00(1.46) 13.67(1.40) 13.17(1.38) 13.50(1.40)
0.8 36.00(1.96) 34.67(1.94) 35.50(1.95) 37.00(1.97) 35.67(1.96) 36.67(1.97)
1.6 82.67(1.55) 82.00(1.57) 82.50(1.55) 82.50(1.55) 81.17(1.60) 82.67(1.55)

H
(7)
0 and Σ = {0.5|i−j|}

0 6.00(0.97) 5.33(0.92) 5.50(0.93) 6.00(0.97) 5.83(0.96) 6.00(0.97)
0.4 32.83(1.92) 31.50(1.90) 32.33(1.91) 33.50(1.93) 32.67(1.91) 32.83(1.92)
0.8 78.83(1.67) 78.00(1.69) 78.83(1.68) 77.33(1.71) 76.83(1.72) 77.50(1.70)
1.6 99.50(0.29) 99.67(0.24) 99.67(0.24) 99.50(0.29) 99.83(0.17) 99.83(0.17)

h(1) H
(8)
0 and Σ = I

0 7.83(1.10) 7.33(1.06) 7.83(1.10) 5.83(0.96) 5.33(0.92) 5.67(0.94)
0.4 12.33(1.34) 12.00(1.33) 12.33(1.34) 12.00(1.33) 11.50(1.30) 11.67(1.31)
0.8 27.50(1.82) 26.33(1.80) 27.17(1.82) 26.00(1.79) 25.33(1.78) 26.00(1.79)
1.6 64.50(1.95) 61.00(1.99) 63.17(1.97) 66.50(1.93) 63.50(1.97) 65.67(1.94)

H
(8)
0 and Σ = {0.5|i−j|}

0 5.33 (0.92) 4.83(0.88) 5.00(0.89) 5.50(0.93) 5.50(0.93) 5.50(0.93)
0.4 23.00 (1.72) 22.00(1.70) 22.50(1.70) 25.00 (1.77) 24.00(1.74) 24.33(1.75)
0.8 66.00 (1.93) 63.50(1.97) 65.17(1.95) 64.17 (1.97) 62.83(1.96) 63.50(1.97)
1.6 98.00 (0.57) 98.17(0.55) 98.33(0.52) 97.67(0.62) 98.00(0.57) 98.00(0.57)
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Table S7
Rejection probabilities (%) of the likelihood ratio (denoted by TL), Wald (denoted by TW )

and score statistic (denoted by TS) for testing H
(1)
0 , with standard errors in parenthesis

(%).

p = 50 p = 200

TL TW TS TL TW TS

h(1) H
(1)
0 and Σ = I

0 4.50(0.85) 4.67(0.86) 4.67(0.86) 4.17(0.82) 4.17(0.82) 4.17(0.82)
0.03 8.17(1.12) 8.17(1.12) 8.17(1.12) 10.83(1.27) 10.83(1.27) 10.83(1.27)
0.06 29.00(1.85) 29.50(1.86) 29.17(1.86) 28.50(1.84) 28.50(1.84) 28.50(1.84)
0.12 76.33(1.74) 76.67(1.73) 76.50(1.73) 73.50(1.80) 73.33(1.81) 73.50(1.80)

H
(1)
0 and Σ = {0.5|i−j|}

0 4.83(0.88) 4.83(0.88) 4.83(0.88) 7.17(1.05) 7.17(1.05) 7.17(1.05)
0.03 9.33(1.19) 9.50(1.20) 9.33(1.19) 11.00(1.28) 11.00(1.28) 11.00(1.28)
0.06 30.67(1.88) 30.67(1.88) 30.83(1.89) 29.50(1.86) 29.50(1.86) 29.50(1.86)
0.12 79.67(1.64) 79.67(1.64) 79.67(1.64) 77.17(1.71) 77.17(1.71) 77.17(1.71)

h(2) H
(2)
0 and Σ = I

0 5.33(0.92) 5.17(0.9) 5.50(0.93) 4.50(0.85) 4.50(0.85) 5.00(0.89)
0.03 19.17(1.61) 19.00(1.60) 19.67(1.62) 20.33(1.64) 20.01(1.66) 21.67(1.68)
0.06 57.33(2.02) 57.67(2.02) 57.67(2.02) 61.33(1.99) 61.67(1.98) 62.00(1.98)
0.12 99.33(0.33) 99.33(0.33) 99.33(0.33) 99.00(0.41) 99.17(0.37) 99.33(0.33)

H
(2)
0 and Σ = {0.5|i−j|}

0 3.83(0.78) 3.83(0.78) 3.83(0.78) 6.17(0.98) 6.17(0.98) 6.67(1.02)
0.03 16.00(1.50) 16.50(1.52) 16.33(1.51) 18.33(1.58) 18.00(1.57) 18.33(1.58)
0.06 54.50(2.03) 54.33(2.03) 54.33(2.03) 55.50(2.03) 55.00(2.03) 56.33(2.02)
0.12 99.00(0.41) 99.17(0.37) 99.17(0.37) 99.33(0.33) 99.33(0.33) 99.33(0.33)
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Fig S4. Kernel density plot of three test statistics under H
(1)
0 with different combinations

of p and the covariance matrices. TL, TW and TS from left to right. p = 50,Σ = Ip and
p = 200,Σ = Ip and p = 50,Σ = {0.5|i−j|}i,j and p = 200,Σ = {0.5|i−j|}i,j from top
to bottom. The black line plot the density function of a χ2 distribution with 1 degree of
freedom.
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Fig S5. Kernel density plot of three test statistics under H
(2)
0 with different combinations

of p and the covariance matrices. TL, TW and TS from left to right. p = 50,Σ = Ip and
p = 200,Σ = Ip and p = 50,Σ = {0.5|i−j|}i,j and p = 200,Σ = {0.5|i−j|}i,j from top
to bottom. The black line plot the density function of a χ2 distribution with 1 degree of
freedom.
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Fig S6. Kernel density plot of three test statistics under H
(2)
0 with different combinations

of p and the covariance matrices. TL, TW and TS from left to right. p = 50,Σ = Ip and
p = 200,Σ = Ip and p = 50,Σ = {0.5|i−j|}i,j and p = 200,Σ = {0.5|i−j|}i,j from top
to bottom. The black line plot the density function of a χ2 distribution with 1 degree of
freedom.



47

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

(A1): TL, Σ = Ip, p=50

 

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

(A2): TW, Σ = Ip, p=50

 

 

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

(A3): TS, Σ = Ip, p=50

 

 

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

(B1): TL, Σ = Ip, p=200

 

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

(B2): TW, Σ = Ip, p=200

 

 

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

(B3): TS, Σ = Ip, p=200

 
 

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

(C1): TL, Σ = AR(1), p=50

 

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

(C2): TW, Σ = AR(1), p=50

 

 

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

(C3): TS, Σ = AR(1), p=50

 

 

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

(D1): TL, Σ = AR(1), p=200

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

(D2): TW, Σ = AR(1), p=200

 

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

(D3): TS, Σ = AR(1), p=200

 

Fig S7. Histograms of three test statistics under H
(1)
0 with different combinations of p

and the covariance matrices. TL, TW and TS from left to right. p = 50,Σ = Ip and
p = 200,Σ = Ip and p = 50,Σ = {0.5|i−j|}i,j and p = 200,Σ = Σ = {0.5|i−j|}i,j from
top to bottom. The black line plot the density function of a χ2 distribution with 1 degree
of freedom.
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Fig S8. Histograms of three test statistics under H
(2)
0 with different combinations of p

and the covariance matrices. TL, TW and TS from left to right. p = 50,Σ = Ip and
p = 200,Σ = Ip and p = 50,Σ = {0.5|i−j|}i,j and p = 200,Σ = Σ = {0.5|i−j|}i,j from top
to bottom. The black line plot the density function of a χ2 distribution with 2 degrees of
freedom.
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