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Pennsylvania State University‡

This paper is concerned with testing linear hypotheses in high dimen-
sional generalized linear models. To deal with linear hypotheses, we first
propose the constrained partial regularization method and study its statisti-
cal properties. We further introduce an algorithm for solving regularization
problems with folded-concave penalty functions and linear constraints. To
test linear hypotheses, we propose a partial penalized likelihood ratio test, a
partial penalized score test and a partial penalized Wald test. We show that
the limiting null distributions of these three test statistics are χ2 distribution
with the same degrees of freedom, and under local alternatives, they asymp-
totically follow noncentral χ2 distributions with the same degrees of freedom
and noncentral parameter, provided the number of parameters involved in the
test hypothesis grows to ∞ at a certain rate. Simulation studies are conducted
to examine the finite sample performance of the proposed tests. Empirical
analysis of a real data example is used to illustrate the proposed testing pro-
cedures.

1. Introduction. During the last three decades, there are many works devoted
to developing variable selection techniques for high dimensional regression mod-
els. Fan and Lv (2010) presents a selective overview on this topic. There are some
recent works for hypothesis testing on Lasso estimate [Tibshirani (1996)] in high
dimensional linear models. Lockhart et al. (2014) proposed the covariance test
which produces a sequence of p-values as the tuning parameter, λn, decreases
and features become nonzero in the Lasso. This approach does not give confi-
dence intervals or p-values for an individual variable’s coefficient. Taylor et al.
(2015) and Lee et al. (2016) extended the covariance testing framework to test
hypotheses about individual features, after conditioning on a model selected by
the Lasso. However, their framework permits inference only about features which
have nonzero coefficients in a Lasso regression; this set of features likely varies
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across samples, making the interpretation difficult. Moreover, these works focused
on high dimensional linear regression models, and it remains unknown whether
their results can be extended to a more general setting.

This paper will focus on generalized linear models [GLM, McCullagh and
Nelder (1989)]. Let Y be the response, and X be its associate fixed-design covari-
ate vector. The GLM assumes that the distribution of Y belongs to the exponential
family. The exponential family with a canonical link has the following probability
density function:

(1.1) exp
(

YβT
0 X − b(βT

0 X)

φ0

)
c(Y ),

where β0 is a p-dimensional vector of regression coefficients, and φ0 is some pos-
itive nuisance parameter. In this paper, we assume that b(·) is thrice continuously
differentiable with b′′(·) > 0.

We study testing the linear hypothesis H0 : Cβ0,M = t in GLM, where β0,M is
a subvector of β0, the true regression coefficients. The number of covariates p can
be much larger than the sample size n, while the number of parameters in β0,M
is assumed to be much smaller than n. Such type of hypotheses is of particular
interest when the goal is to explore the group structure of β0. Moreover, it also
includes a very important class of hypotheses β0,M = 0 by setting C to be the
identity matrix and t = 0. In the literature, Fan and Peng (2004) proposed the pe-
nalized likelihood ratio test for H0a : Cβ0,S = 0 in GLM, where β0,S is the vector
consisting of all nonzero elements of β0 when p = o(n1/5) where n stands for
the sample size. Wang and Cui (2013) extended Fan and Peng’s (2004) proposal
and considered a penalized likelihood ratio statistic for testing H0b : β0,M = 0,
requiring p = o(n1/5). Ning and Liu (2017) proposed a decorrelated score test for
H0c : β0,M = 0 under the setting of the high dimensional penalized M-estimators
with nonconvex penalties. Recently, Fang, Ning and Liu (2017) extended the pro-
posal of Ning and Liu (2017) and developed a class of decorrelated Wald, score
and partial likelihood ratio tests for Cox’s model with high dimensional survival
data. Zhang and Cheng (2017) proposed a maximal-type statistic based on the
desparsified Lasso estimator [van de Geer et al. (2014)] and a bootstrap-assisted
testing procedure for H0d : β0,M = 0, allowing the cardinality of M to be an arbi-
trary subset of [1, . . . , p]. In this paper, we aim to develop theory of the Wald test,
score test and likelihood ratio test for H0 : Cβ0,M = t in GLM under an ultrahigh
dimensional setting (i.e., p grows exponentially with n).

It is well known that the Wald, score and likelihood ratio tests are equivalent in
the fixed p case. However, it can be challenging to generalize these statistics to the
setting with ultrahigh dimensionality. To better understand this point, we take the
Wald statistic for illustration. Consider the null hypothesis H0 : β0,M = 0. Anal-
ogous to the classical Wald statistic, in the high dimensional setting, one might
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consider the statistic β̂
T

M{ĉov(β̂M)}−1β̂M for some penalized regression estima-
tor β̂ and its variance estimator ĉov(β̂). The choice of the estimators is essential
here: some penalized regression estimator such as the Lasso, or the Dantzig es-
timator [Candes and Tao (2007)] cannot be used due to their large biases when
p � n. The nonconcave penalized estimator does not have this bias issue, but the
minimal signal conditions imposed in Fan and Peng (2004) and Fan and Lv (2011)
imply that the associated Wald statistic does not have any power for local alter-
natives of the type Ha : β0,M = hn for some sequence hn such that ‖hn‖2 � λn

where ‖ · ‖2 is the Euclidean norm. Moreover, to implement the score and the like-
lihood ratio statistics, we need to estimate the regression parameter under the null,
which involves penalized likelihood under linear constraints. This is a very chal-
lenging task and has rarely been studied: (a) the associated estimation and variable
selection property is not standard from a theoretical perspective, and (b) there is
a lack of constrained optimization algorithms that can produce sparse estimators
from a computational perspective.

We briefly summarize our contributions as follows. First, we consider a more
general form of hypothesis. In contrast, existing literature mainly focuses on test-
ing β0,M = 0. Besides, we also allow the number of linear constraints to diverge
with n. Our tests are therefore applicable to a wider range of real applications
for testing a growing set of linear hypotheses. Second, we propose a partial penal-
ized Wald, a partial penalized score and a partial penalized likelihood-ratio statistic
based on the class of folded-concave penalty functions, and show their equivalence
in the high dimensional setting. We derive the asymptotic distributions of our test
statistics under the null hypothesis and the local alternatives. Third, we systemati-
cally study the partial penalized estimator with linear constraints. We derive its rate
of convergence and limiting distribution. These results are significant in their own
rights. The unconstrained and constrained estimators share similar forms, but the
constrained estimator is more efficient due to the additional information contained
in the constraints under the null hypothesis. Fourth, we introduce an algorithm for
solving regularization problems with folded-concave penalty functions and equal-
ity constraints, based on the alternating direction method of multipliers [ADMM,
cf. Boyd et al. (2011)].

The rest of the paper is organized as follows. We study the statistical prop-
erties of the constrained partial penalized estimator with folded concave penalty
functions in Section 2. We formally define our partial penalized Wald, score
and likelihood-ratio statistics, establish their limiting distributions and show their
equivalence in Section 3. Detailed implementations of our testing procedures are
given in Section 3.3, where we introduce our algorithm for solving the constrained
partial penalized regression problems. Simulation studies are presented in Sec-
tion 4. The proof of Theorem 3.1 is presented in Section 5. Other proofs and ad-
dition numerical results are presented in the Supplementary Material [Shi et al.
(2019)].
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2. Constrained partial penalized regression.

2.1. Model setup. Suppose that {Xi , Yi}, i = 1, . . . , n is a sample from model
(1.1). Denote by Y = (Y1, . . . , Yn) the n-dimensional response vector and X =
(X1, . . . ,Xn)

T is the n × p design matrix. We assume the covariates Xi are fixed
design. Let Xj denote the j th column of X. To simplify the presentation, for any
r × q matrix � and any set J ⊂ [1,2, . . . , q], we denote by �J the submatrix
of � formed by columns in J . Similarly, for any q-dimensional vector φ, φJ

stands for the subvector of φ formed by elements in J . We further denote �J1,J2

as the submatrix of � formed by rows in J1 and columns in J2 for any J1 ⊆
[1, . . . , r] and J2 ⊆ [1, . . . , q]. Let |J | be the number of elements in J . Define
J c = [1, . . . , q] − J to be the complement of J .

In this paper, we assume logp = O(na) for some 0 < a < 1 and focus on the
following testing problem:

(2.1) H0 : Cβ0,M = t

for a given M ⊆ [1, . . . , p], an r × |M| matrix C and an r-dimensional vector t .
We assume that the matrix C is of full row rank. This implies there are no redun-
dant or contradictory constraints in (2.1). Let m = |M|; we have r ≤ m.

Define the partial penalized likelihood function

Qn(β, λ) = 1

n

n∑
i=1

{
Yiβ

T Xi − b
(
βT Xi

)}− ∑
j /∈M

pλ

(|βj |)
for some penalty function pλ(·) with a tuning parameter λ. Further define

β̂0 = arg max
β

Qn(β, λn,0) subject to CβM = t,(2.2)

β̂a = arg max
β

Qn(β, λn,a).(2.3)

Note that in (2.2) and (2.3), we do not add penalties on parameters involved in the
constraints. This enables to avoid imposing minimal signal condition on elements
of β0,M. Thus, the corresponding likelihood ratio test, Wald test and score test
have power at local alternatives.

We present a lemma to characterize the constrained local maximizer β̂0 in the
Supplementary Material (see Lemma S.4). In Section 3, we show that these par-
tial penalized estimators help us to obtain valid statistical inference about the null
hypothesis.

2.2. Partial penalized regression with linear constraint. In this section, we
study the statistical properties of β̂0 and β̂a by restricting pλ to the class of folded
concave penalty functions. Popular penalty functions such as SCAD [Fan and Li
(2001)] and MCP [Zhang (2010)] belong to this class. Let ρ(t0, λ) = pλ(t0)/λ
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for λ > 0. We assume that ρ(t0, λ) is increasing and concave in t0 ∈ [0,∞),
and has a continuous derivative ρ′(t0, λ) with ρ′(0+, λ) > 0. In addition, assume
ρ′(t0, λ) is increasing in λ ∈ (0,∞) and ρ′(0+, λ) is independent of λ. For any
vector v = (v1, . . . , vq)

T , define

ρ̄(v, λ) = {
sgn(v1)ρ

′(|v1|, λ), . . . , sgn(vq)ρ′(|vq |, λ)}T ,

μ(v) = {
b′(v1), . . . , b

′(vq)
}
, �(v) = diag

{
b′′(v1), . . . , b

′′(vq)
}
,

where sgn(·) denotes the sign function. We further define the local concavity of
the penalty function ρ at v with ‖v‖0 = q as

κ(ρ,v, λ) = lim
ε→0+ max

1≤j≤q
sup

t1<t2∈(|vj |−ε,|vj |+ε)

−ρ′(t2, λ) − ρ′(t1, λ)

t2 − t1
.

We assume that the true regression coefficient β0 is sparse and satisfies
Cβ0,M − t = hn for some sequence of vectors hn → 0. When hn = 0, the null
holds. Otherwise, the alternative holds. Let S = {j ∈ Mc : β0,j = 0} and s = |S|.
Let dn be the half minimum signal of β0,S , that is, dn = minj∈S |βj |/2. Define
N0 = {β ∈ R

p : ‖βS∪M − β0,S∪M‖2 ≤ √
(s + m) log(n)/n,β(S∪M)c = 0}. We

impose the following conditions:

(A1) Assume that

max
1≤j≤p

∥∥Xj
∥∥∞ = O

(√
n/ log(p)

)
, max

1≤j≤p

∥∥Xj
∥∥

2 = O(
√

n),

inf
β∈N0

λmin
(
XT

S∪M�(Xβ)XS∪M
) ≥ cn,

λmax
(
XT

S∪M�(Xβ0)XS∪M
) = O(n),∥∥XT

(S∪M)c�
(
XT β0

)
XS∪M

∥∥
2,∞ = O(n),

max
1≤j≤p

sup
β∈N0

λmax
(
XT

S∪M diag
{∣∣Xj

∣∣ ◦ ∣∣b′′′(Xβ)
∣∣}XS∪M

) = O(n)

for some constant c > 0, where for any vector v = (v1, . . . , vq)
T , diag(v) denotes

a diagonal matrix with the j th diagonal elements being vj , |v| = (|v1|, . . . , |vq |)T ,
and ‖B‖2,∞ = supv:‖v‖2=1 ‖Bv‖ for any matrix B with q rows.

(A2) Assume that dn � λn,j � max{√(s + m)/n,
√

(logp)/n}, p′
λn,j

(dn) =
o((s + m)−1/2n−1/2), λn,j κ0,j = o(1) where κ0,j = maxβ∈N0 κ(ρ,β, λn,j ), for
j = 0, a.

(A3) Assume that there exist some constants M and v0 such that

max
1≤i≤n

E
{

exp
( |Yi − μ(βT

0 Xi )|
M

)
− 1 − |Yi − μ(βT

0 Xi )|
M

}
M2 ≤ v0

2
.

(A4) Assume that ‖hn‖2 = O(
√

min(s + m − r, r)/n), and λmax((CCT )−1) =
O(1).



2676 SHI, SONG, CHEN AND LI

In Section S4.1 of the Supplementary Material, we show that Condition (A1)
holds with probability tending to 1 if the covariate vectors X1, . . . ,Xn are uni-
formly bounded or realizations from a sub-Gaussian distribution. The first con-
dition in (A2) is a minimum signal assumption imposed on nonzero elements in
Mc only. This is due to partial penalization, which enables us to evaluate the un-
certainty of the estimation for small signals. Such conditions are not assumed in
van de Geer et al. (2014) and Ning and Liu (2017) for testing H0 : β0,M = 0.
However, we note that these authors impose some additional assumptions on the
design matrix. For example, the validity of the decorrelated score statistic depends
on the sparsity of w∗. For testing univariate parameters, this requires the degree of
a particular node in the graph to be relatively small when the covariate follows a
Gaussian graphical model [see Remark 6 in Ning and Liu (2017)]. In Section S4.3
of the Supplementary Material, we show Condition (A3) holds for linear, logistic
and Poisson regression models.

THEOREM 2.1. Suppose that Conditions (A1)–(A4) hold, and s + m =
o(

√
n), then the following holds: (i) With probability tending to 1, β̂0 and

β̂a defined in (2.2) and (2.3) must satisfy β̂0,(S∪M)c = β̂a,(S∪M)c = 0.

(ii) ‖β̂a,S∪M − βa,S∪M‖2 = Op(
√

(s + m)/n) and ‖β̂0,S∪M − β0,S∪M‖2 =
Op(

√
(s + m − r)/n). If further s + m = o(n1/3), then we have

√
n

(
β̂a,M − β0,M
β̂a,S − β0,S

)
= 1√

n
K−1

n

(
XT

M
XT

S

){
Y − μ(Xβ0)

}+ op(1),

√
n

(
β̂0,M − β0,M
β̂0,S − β0,S

)
= 1√

n
K−1/2

n (I − P n)K
−1/2
n

(
XT

M
XT

S

){
Y − μ(Xβ0)

}
− √

nK−1/2
n P nK

−1/2
n

(
CT

(
CCT

)−1
hn

0

)
+ op(1),

where I is the identity matrix, Kn is the (m + s) × (m + s) matrix

Kn = 1

n

(
XT

M�(Xβ0)XM XT
M�(Xβ0)XS

XT
S�(Xβ0)XM XT

S�(Xβ0)XS

)
and P n is the (m × s) × (m × s) projection matrix

P n = K−1/2
n

(
CT

OT
r×s

){
(C Or×s)K

−1
n

(
CT

OT
r×s

)}−1

(C Or×s)K
−1/2
n ,

where Or×s is an r × s zero matrix.

REMARK 2.1. Since dn � √
(s + m)/n, Theorem 2.1(ii) implies that each

element in β̂0,S and β̂a,S is nonzero. This together with result (i) shows the sign

consistency of β̂0,Mc and β̂a,Mc .
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REMARK 2.2. Theorem 2.1 implies that the constrained estimator β̂0 con-
verges at a rate of Op(

√
s + m − r/

√
n). In contrast, the unconstrained estimator

converges at a rate of Op(
√

s + m/
√

n). This suggests that when hn is relatively
small, the constrained estimator β̂0 converges faster than the unconstrained β̂a de-
fined in (2.3), when s + m − r � s + m. This result is expected with the following
intuition: the more information about β0 we have, the more accurate the estimator
will be.

REMARK 2.3. Under certain regularity conditions, Theorem 2.1 implies that
√

n
{
(β̂0,M − β0,M)T , (β̂0,S − β0,S)T

} → N(−ξ0,V 0),

where ξ0 and V 0 are limits of
√

nK
−1/2
n P nK

−1/2
n (hT

n ,0T )T and K
−1/2
n ×

(I − P n)K
−1/2
n , respectively. Similarly, we can show

√
n
{
(β̂a,M − β0,M)T , (β̂a,S − β0,S)T

} → N(0,V a),

where V a = limn K−1
n . Note that aT V 0a ≤ aT V aa for any a ∈ R

s+m. Under the
null, we have ξ0 = 0, which suggests that β̂0 is more efficient than β̂a in terms of a
smaller asymptotic variance. Under the alternative, β̂0,M is asymptotically biased.

This can be interpreted as a bias-variance trade-off between β̂0 and β̂a .

3. Partial penalized Wald, score and likelihood ratio statistics.

3.1. Test statistics. We begin by introducing our partial penalized likelihood
ratio statistic,

(3.1) TL = 2n
{
Ln(β̂a) − Ln(β̂0)

}
/φ̂,

where Ln(β) = ∑
i{Yiβ

T Xi − b(βT Xi )}/n, β̂0 and β̂a are defined in (2.2) and
(2.3), respectively, and φ̂ is some consistent estimator for φ0 in (1.1). For Gaus-
sian linear models, φ0 corresponds to the error variance. For logistic or Poisson
regression models, φ0 = 1.

The partial penalized Wald statistic is based on
√

n(Cβ̂a,M − t). Define
�n = K−1

n , and denote �mm as the first m rows and columns of �n. It follows
from Theorem 2.1 that its asymptotic variance is equal to C�mmCT . Let Ŝa =
{j ∈ Mc : β̂a,j = 0}. Then, with probability tending to 1, we have Ŝa = S. Define

�̂a = n

⎛⎝XT
M�(Xβ̂a)XM XT

M�(Xβ̂a)XŜa

XT
Ŝa

�(Xβ̂a)XM XT
Ŝa

�(Xβ̂a)XŜa

⎞⎠−1

,

and �̂a,mm as its submatrix formed by its first m rows and columns. The partial
penalized Wald statistic is defined by

(3.2) TW = (Cβ̂a,M − t)T
(
C�̂a,mmCT )−1

(Cβ̂a,M − t)/φ̂.
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Analogous to the classical score statistic, we define our partial penalized score
statistic as

(3.3) TS = {
Y − μ(Xβ̂0)

}T (
XM
XŜ0

)
�̂0

(
XM
XŜ0

)T {
Y − μ(Xβ̂0)

}
/φ̂,

where Ŝ0 = {j ∈Mc : β̂0,j = 0}, and

�̂0 = n

⎛⎝XT
M�(Xβ̂0)XM XT

M�(Xβ̂0)XŜ0

XT
Ŝ0

�(Xβ̂0)XM XT
Ŝ0

�(Xβ̂0)XŜ0

⎞⎠−1

.

3.2. Limiting distributions of the test statistics. For a given significance level
α, we reject the null hypothesis when T > χ2

α(r) for T = TL,TW or TS where
χ2

α(r) is the upper α-quantile of a central χ2 distribution with r degrees of freedom
and r is the number of constraints. Assume r is fixed. When φ̂ is consistent to φ0,
it follows from Theorem 2.1 that TL, TW and TS converge asymptotically to a
(noncentral) χ2 distribution with r degrees of freedom. However, when r diverges
with n, there is no such theoretical guarantee. This is because the concept of weak
convergence is not well-defined in such settings. To resolve this issue, we observe
that when the following holds:

sup
x

∣∣Pr(T ≤ x) − Pr
(
χ2(r, γn) ≤ x

)∣∣ → 0,

where χ2(r, γn) is a chi square random variable with r degrees of freedom and
noncentrality parameter γn which is allowed to vary with n, our testing procedure
is still valid using χ2 approximation.

THEOREM 3.1. Assume Conditions (A1)–(A4) hold, s + m = o(n1/3), and
|φ̂ − φ0| = op(1). Further assume the following holds:

(3.4)
r1/4

n3/2

n∑
i=1

{
(Xi,M∪S)T K−1

n Xi,M∪S
}3/2 → 0.

Then we have

(3.5) sup
x

∣∣Pr(T ≤ x) − Pr
(
χ2(r, γn) ≤ x

)∣∣ → 0

for T = TW ,TS or TL, where γn = nhT
n (C�mmCT )−1hn/φ0.

REMARK 3.1. By (3.5), it is immediate to see that

sup
x

∣∣Pr(T1 ≤ x) − Pr(T2 ≤ x)
∣∣ → 0

for any T1, T2 ∈ {TW ,TS, TL}. This establish the equivalence between the partial
penalized Wald, score and likelihood-ratio statistics. Condition (3.4) is the key to
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guarantee χ2 approximation in (3.5). When r = O(1), this condition is equivalent
to

1

n3/2

n∑
i=1

{
(Xi,M∪S)T K−1

n Xi,M∪S
}3/2 → 0,

which corresponds to the Lyaponuv condition that ensures the asymptotic normal-
ity of β̂0,M∪S and β̂a,M∪S . When r diverges, (3.4) guarantees that the following
Lyaponuv type bound goes to 0:

sup
C

∣∣Pr
((

C�mmCT )−1/2
(Cβ̂a,M − t)/

√
φ0 ∈ C

)− Pr(Z ∈ C)
∣∣ → 0,

where Z represents an r-dimensional multivariate normal with identity covariance
matrix, and the supremum is taken over all convex subsets C in R

m. The scaling
factor r1/4 accounts for the dependence of the above Lyaponuv type estimate on
the dimension and it remains unknown whether the factor r1/4 can be improved
[see related discussions in Bentkus (2004)].

REMARK 3.2. Theorem 3.1 implies that our testing procedures are consistent.
When the null holds, we have hn = 0, and hence γn = 0. This together with equa-
tion (3.5) suggests that our tests have correct size under the null. Under the alter-
native, we have hn = 0, and hence γn = 0. Since χ2(r,0) is stochastically smaller
than χ2(r, γn), (3.5) implies that our tests have nonnegligible powers under Ha .
We summarize these results in the following corollary.

COROLLARY 3.1. Assume Conditions (A1)–(A3) and (3.4) hold, s + m =
o(n1/3), λmax((CCT )−1) = O(1), and |φ̂ − φ0| = op(1). Then, under the null hy-
pothesis, for any 0 < α < 1, we have

lim
n

Pr
(
T > χ2

α(r)
) = α

for T = TW ,TL and TS , where χ2
α(r) is the critical value of χ2-distribution with

r degrees of freedom at level α. Under the alternative Cβ0,M − t = hn for some
hn satisfying hn = O(

√
min(s + m − r, r)/n), we have for any 0 < α < 1, and

T = TW ,TS and TL,

lim
n

∣∣Pr
(
T > χ2

α(r)
)− Pr

(
χ2(r, γn) > χ2

α(r)
)∣∣ = 0,

where γn = nhT
n (C�mmCT )−1hn/φ0.

REMARK 3.3. Corollary 3.1 shows that the asymptotic power functions of the
proposed test statistics are

(3.6) Pr
(
χ2(r, γn) > χ2

α(r)
)
.
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It follows from Theorem 2 in Ghosh (1973) that the asymptotic power function
decreases as r increases for a given γn. This is the same as that for traditional
likelihood ratio test, score test and Wald’s test. However, hn is an r-dimensional
vector in our setting. Thus, one may easily construct an example in which γn grows
as r increases. As a result, the asymptotic power function may not be monotone
increasing function of r .

In Section S3 of Shi et al. (2019), we study in depth that how the penalty on in-
dividual coefficient affects the power, and find that the tests are most advantageous
if each unpenalized variable is either an important variable (i.e., in S) or a variable
in M.

REMARK 3.4. Notice that the null hypothesis reduces to β0,M = 0 if we set
C to be the identity matrix and t = 0. The Wald test based on the desparsified
Lasso estimator [van de Geer et al. (2014)] and the decorrelated score test [Ning
and Liu (2017)] can also be applied to testing such hypothesis. Based on (3.6), we
show that these two tests achieve less power than the proposed partial penalized
tests in Section S1 of Shi et al. (2019). This is due to the increased variances of the
desparsified Lasso estimator and the decorrelated score statistic after the debiasing
procedure.

3.3. Some implementation issues.

3.3.1. Constrained partial penalized regression. To construct our test statis-
tics, we need to compute the partial penalized estimators β̂0 and β̂a . Our algorithm
is based upon the alternating direction method of multipliers (ADMM), which is a
variant of the standard augmented Lagrangian method. Below, we present our al-
gorithm for estimating β̂0. The unconstrained estimator β̂a can be similarly com-
puted. For a fixed regularization parameter λ, define

β̂
λ

0 = arg min
β

(
−Ln(β) + ∑

j∈Mc

pλ

(|βj |)) subject to CβM = t .

The above optimization problem is equivalent to

(3.7)

(
β̂

λ

0, θ̂
λ

0
) = arg min

β∈Rp

θ∈Rp−m

(
−Ln(β) +

p−m∑
j=1

pλ

(|θj |)
)
,

subject to CβM = t,βMc = θ .

The augmented Lagrangian for (3.7) is

Lρ(β, θ,v) = −Ln(β) +
p−m∑
j=1

pλ

(|θj |)+ vT

(
CβM − t
βMc − θ

)

+ ρ

2
‖CβM − t‖2

2 + ρ

2
‖βMc − θ‖2

2,
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for a given ρ > 0. Applying the dual ascent method yields the following algorithm:

βk+1 = arg min
β

⎧⎨⎩(vk)T (
CβM − t

βMc − θk

)
+ ρ

2

∥∥∥∥∥CβM − t

βMc − θk

∥∥∥∥∥
2

2

− Ln(β)

⎫⎬⎭ ,

θk+1 = arg min
θ

⎧⎨⎩
p−m∑
j=1

pλ

(|θj |)+ ρ

2

∥∥βk+1
Mc − θ

∥∥2
2 + (

vk)T (
Cβk+1

M − t

βk+1
Mc − θ

)⎫⎬⎭ ,

vk+1 = vk + ρ

(
Cβk+1

M − t

βk+1
Mc − θk+1

)

for the (k + 1)th iteration.
Since Ln is twice differentiable, βk+1 can be obtained by the Newton–Raphson

algorithm. θk+1 may have a closed form for some popular penalties such as the
Lasso, SCAD or MCP penalty. In our implementation, we use the SCAD penalty,

pλ

(|βj |) = λ

∫ |βj |
0

{
I (t ≤ λ) + (aλ − t)+

a − 1
I (t > λ)

}
dt,

and set a = 3.7, ρ = 1.

To obtain β̂0, we compute β̂
λ

0 for a series of log-spaced values in [−λmin, λmax]
for some λmin < λmax. Then we choose β̂0 = β̂

λ̂

0 by minimizing the following
information criterion:

λ̂ = arg min
λ

(−nLn(λ) + cn

∥∥β̂λ∥∥
0

)
,

where cn = max{logn, log(log(n)) log(p)}. Using similar arguments in Schwarz
(1978) and Fan and Tang (2013), we can show such information criterion is con-
sistent in both fixed p and ultrahigh dimension setting.

3.3.2. Estimation of the nuisance parameter. It can be shown that φ0 = 1 for
logistic or Poisson regression models. In linear regression models, we have φ0 =
E(Yi − βT

0 Xi )
2. In our implementation, we estimate φ0 by

φ̂ = 1

n − |Ŝa| − m

n∑
i=1

(
Yi − β̂

T

a Xi

)2
,

where β̂a is defined in (2.3).
In Section S2 of the Supplementary Material [Shi et al. (2019)], we show φ̂ =

φ0 + Op(n−1/2), under the conditions in Theorem 2.1, which implies selection
consistency. Alternatively, one can estimate φ0 using refitted cross-validation [Fan,
Guo and Hao (2012)] or scaled lasso [Sun and Zhang (2013)].
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4. Numerical examples. In this section, we examine the finite sample perfor-
mance of the proposed tests. Simulation results for linear regression and logistic
regression are presented in the main text. In the Supplementary Material [Shi et al.
(2019)], we present simulation results for Poisson log-linear model and illustrate
the proposed methodology by a real data example.

4.1. Linear regression. Simulated data with sample size n = 100 were gener-
ated from

Y = 2X1 − (
2 + h(1))X2 + h(2)X3 + ε,

where ε ∼ N(0,1) and X ∼ N(0p,�), and h(1) and h(2) are some constants. The
true value β0 = (2,−2 − h(1), h(2),0T

p−3)
T where 0q denotes a zero vector of

length q .

4.1.1. Testing linear hypothesis. We focus on testing the following three pairs
of hypotheses:

H
(1)
0 : β0,1 + β0,2 = 0 vs H(1)

a : β0,1 + β0,2 = 0,

H
(2)
0 : β0,2 + β0,3 = −2 vs H(2)

a : β0,2 + β0,3 = −2,

H
(3)
0 : β0,3 + β0,4 = 0 vs H(3)

a : β0,3 + β0,4 = 0.

These hypotheses test linear structures between two regression coefficients. When
testing H

(1)
0 , we set h(2) = 0, and hence H

(1)
0 holds if and only if h(1) = 0. Simi-

larly, when testing H
(2)
0 and H

(3)
0 , we set h(1) = 0, and hence the hull hypotheses

hold if and only if h(2) = 0.
We consider two different dimensions, p = 50 and p = 200, and two differ-

ent covariance matrices �, corresponding to � = I and � = {0.5|i−j |}i,j=1,...,p .
This yields a total of 4 settings. For each hypothesis and each setting, we fur-
ther consider four scenarios, by setting h(j) = 0,0.1,0.2,0.4. Therefore, the null
holds under the first scenario and the alternative holds under the other three. Ta-
ble 1 summarizes the rejection probabilities for H

(1)
0 , H

(2)
0 and H

(3)
0 under the

settings where � = {0.5|i−j |}. Rejection probabilities of the proposed tests under
the settings where � = I are given in Table S1 in the Supplementary Material. The
rejection probabilities are evaluated via 600 simulation replications.

Based on the results, it can be seen that under these null hypotheses, Type I error
rates of the three tests are well controlled and close to the nominal level for all four
settings. Under the alternative hypotheses, the powers of these three test statistics
increase as h(1) or h(2) increases, showing the consistency of our testing procedure.
Moreover, the empirical rejection rates between these three test statistics are very
close across all different scenarios and settings. For example, the rejection rates
are exactly the same for testing H

(1)
0 and H

(2)
0 when p = 200 in Table 1, although

we observed that the values of these three statistics in our simulation are slightly
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TABLE 1
Rejection probabilities (%) of the partial penalized Wald, score and likelihood ratio statistics with

standard errors in parenthesis (%), under the setting where � = {0.5|i−j |}i,j=1,...,p

p = 50 p = 200

TL TW TS TL TW TS

h(1) H
(1)
0

0 4.33 (0.83) 4.33 (0.83) 4.67 (0.86) 5.67 (0.94) 5.67 (0.94) 5.67 (0.94)

0.1 13.17 (1.38) 13.50 (1.40) 13.50 (1.40) 11.67 (1.31) 11.67 (1.31) 11.67 (1.31)

0.2 39.83 (2.00) 40.17 (2.00) 40.00 (2.00) 39.67 (2.00) 39.67 (2.00) 39.67 (2.00)

0.4 92.33 (1.09) 93.17 (1.03) 93.17 (1.03) 92.67 (1.06) 92.67 (1.06) 92.67 (1.06)

h(2) H
(2)
0

0 5.17 (0.90) 5.17 (0.90) 5.67 (0.94) 5.33 (0.92) 5.33 (0.92) 5.33 (0.92)

0.1 11.00 (1.28) 11.00 (1.28) 11.33 (1.29) 12.50 (1.35) 12.50 (1.35) 12.50 (1.35)

0.2 30.67 (1.88) 30.67 (1.88) 31.00 (1.89) 33.67 (1.93) 33.67 (1.93) 33.67 (1.93)

0.4 85.17 (1.45) 85.00 (1.46) 85.00 (1.46) 87.83 (1.33) 87.83 (1.33) 87.83 (1.33)

h(2) H
(3)
0

0 6.50 (1.01) 6.33 (0.99) 6.50 (1.01) 5.67 (0.94) 5.67 (0.94) 5.67 (0.94)

0.1 11.83 (1.32) 11.67 (1.31) 11.67 (1.31) 11.00 (1.28) 11.00 (1.28) 11.00 (1.28)

0.2 31.67 (1.90) 31.50 (1.90) 31.67 (1.90) 33.17 (1.92) 33.17 (1.92) 33.17 (1.92)

0.4 84.33 (1.48) 84.17 (1.49) 84.50 (1.48) 86.00 (1.42) 86.17 (1.41) 86.17 (1.41)

different. This is consistent with our theoretical findings that these statistics are
asymptotically equivalent even in high dimensional settings. Figures S1, S2 and S3
in the Supplementary Material depicts the kernel density estimates of three test
statistics under H

(1)
0 and H

(2)
0 with different combinations of p and the covariance

matrices, respectively. It can be seen that these three test statistics converge to their
limiting distributions under the null hypotheses.

4.1.2. Testing univariate parameter. Consider testing the following two pairs
of hypotheses:

H
(4)
0 : β0,2 = −2 vs H(1)

a : β0,2 = −2,

H
(5)
0 : β0,3 = 0 vs H(2)

a : β0,3 = 0.

We set h(2) = 0 when testing H
(4)
0 , and set h(1) = 0 when testing H

(5)
0 . Therefore,

H
(4)
0 is equivalent to h(1) = 0 and H

(5)
0 is equivalent to h(2) = 0. We use the same

4 settings described in Section 4.1.1. For each setting, we set h(1) = 0.1,0.2,0.4
under H

(4)
a and h(2) = 0.1,0.2,0.4 under H

(5)
a . Comparison is made among the

following test statistics:
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(i) The proposed likelihood ratio (TL), Wald (TW ) and score (TS) statistic.
(ii) The Wald test statistic based on the desparisfied Lasso estimator (T D

W ).
(iii) The decorrelated score statistic (T D

S ).

The test statistic T D
W is computed via the R package hdi [Dezeure et al. (2015)].

We calculate T D
S according to Section 4.1 in Ning and Liu (2017). More specif-

ically, the initial estimator β̂ is computed by a penalized linear regression with
SCAD penalty function, and ω̂ is computed by a penalized linear regression with
l1 penalty function [see equation (4.4) in Ning and Liu (2017)]. These penalized
regressions are implemented via the R package ncvreg [Breheny and Huang
(2011)]. The tuning parameters are selected via 10-folded cross-validation. The re-
jection probabilities of these test statistics under the settings where � = {0.5|i−j |}
are reported in Table 2. In the Supplementary Material, we report the rejection
probabilities of these test statistics under the settings where � = I in Table S1.
Results are averaged over 600 simulation replications.

From Table 2, it can be seen that T D
W failed to test H

(4)
0 under the settings where

� = {0.5|i−j |}. Under the null hypotheses, the Type I error rates of T D
W are greater

than 12%. Under the alternative hypotheses, the proposed test statistics and the
decorrelated score test are more powerful than T D

W in almost all cases. Besides,
we note that TL, TW , TS and T D

S perform comparable under the settings where
� = I . When � = {0.5|i−j |}, however, the proposed test statistics achieve greater
power than T D

S . This is in line with our theoretical findings (see Section S1 of the
Supplementary Material for details).

4.1.3. Effects on m. In Section 4.1.1, we consider linear hypotheses involving
two parameters only. As suggested by one of the referees, we further examined our
test statistics under settings where more regression parameters are involved in the
hypotheses. More specifically, we consider the following three pairs of hypotheses:

H
(6)
0 :

4∑
j=1

β0,j = 0 vs H(6)
a :

4∑
j=1

β0,j = 0,

H
(7)
0 :

8∑
j=1

β0,j = 0 vs H(7)
a :

8∑
j=1

β0,j = 0,

H
(8)
0 :

12∑
j=1

β0,j = 0 vs H(8)
a :

12∑
j=1

β0,j = 0.

The numbers of parameters involved in H
(6)
0 , H

(7)
0 and H

(8)
0 are equal to 4, 8 and

12, respectively. We consider the same 4 settings described in Section 4.1.1. For
each setting, we set h(1) = 0,0.2,0.4,0.8 and h(2) = 0. Hence, the null hypothe-
ses hold when h(1) = 0 and the alternatives hold when h(1) > 0. We report the
rejection probabilities over 600 replications in Table 3, under the settings where
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TABLE 2
Rejection probabilities (%) of the partial penalized Wald, score and likelihood ratio statistics, the
Wald test statistic based on the desparsified Lasso estimator and the decorrelated score statistic

under the settings where � = {0.5|i−j |}i,j=1,...,p , with standard errors in parenthesis (%)

TL TW TS T D
W T D

S

h(1) H
(4)
0 and p = 50

0 5.17 (0.90) 5.33 (0.92) 5.50 (0.93) 12.67 (1.36) 7.00 (1.04)

0.1 15.67 (1.48) 16.00 (1.50) 16.00 (1.50) 6.00 (0.97) 14.67 (1.44)

0.2 41.00 (2.01) 41.33 (2.01) 41.50 (2.01) 14.83 (1.45) 38.83 (1.99)

0.4 92.50 (1.08) 93.00 (1.04) 93.00 (1.04) 67.67 (1.91) 88.67 (1.29)

H
(4)
0 and p = 200

0 4.83 (0.88) 4.83 (0.88) 4.83 (0.88) 21.83 (1.69) 5.50 (0.93)

0.1 11.00 (1.28) 11.00 (1.28) 11.00 (1.28) 5.83 (0.96) 10.83 (1.27)

0.2 40.50 (2.00) 40.50 (2.00) 40.50 (2.00) 6.17 (0.98) 37.83 (1.98)

0.4 91.50 (1.14) 91.50 (1.14) 91.50 (1.14) 49.33 (2.04) 88.00 (1.33)

h(2) H
(5)
0 and p = 50

0 6.33 (0.99) 6.00 (0.97) 6.50 (1.00) 5.33 (0.92) 3.00 (0.70)

0.1 13.67 (1.40) 13.50 (1.40) 14.00 (1.42) 5.33 (0.92) 9.17 (1.18)

0.2 40.17 (2.00) 40.33 (2.00) 40.50 (2.00) 15.67 (1.48) 28.50 (1.84)

0.4 90.83 (1.18) 91.33 (1.15) 91.67 (1.13) 69.17 (1.89) 83.33 (1.52)

H
(5)
0 and p = 200

0 5.67 (0.94) 5.67 (0.94) 5.67 (0.94) 6.50 (1.01) 2.67 (0.66)

0.1 13.67 (1.40) 13.67 (1.40) 13.67 (1.40) 3.67 (0.77) 8.17 (1.12)

0.2 39.17 (1.99) 39.17 (1.99) 39.17 (1.99) 9.67 (1.21) 24.67 (1.76)

0.4 91.50 (1.14) 91.50 (1.14) 91.50 (1.14) 51.33 (2.04) 80.50 (1.62)

� = {0.5|i−j |}. Rejection probabilities under the settings where � = I are reported
in Table S3 in the Supplementary Material.

The Type I error rates of the three test statistics are close to the nominal level
under the null hypotheses. The powers of the test statistics increase as h(1) in-
creases, under the alternative hypotheses. Moreover, we note that the powers de-
crease as m increases. This is in line with Corollary 3.1 which states that the
asymptotic power function of our test statistics is a function of r and γn. Recall
that γn = nhT

n (C�mmCT )−1hn/φ0. Consider the following sequence of null hy-
potheses indexed by m ≥ 2: Cmβ0 = 0 where Cm = (1, . . . ,1,0p−m). Let γn,m =
nhT

n (Cm�mmCT
m)−1hn/φ0. Under the given settings, we have �mm = (ωij ) is a

banded matrix with ωij = 0 for |i − j | ≥ 2, ωij = −1/(1 − ρ2) for |i − j | = 1,
ω11 = ωmm = 1/{ρ(1 − ρ2)} and ωjj = (1 + ρ2)/{ρ(1 − ρ2)} for j = 1 and m,
where ρ is the autocorrelation between X1 and X2. It is immediate to see γn,m

decreases as m increases.
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TABLE 3
Rejection probabilities (%) of the partial penalized Wald, score and likelihood ratio statistics with

standard errors in parenthesis (%), under the settings where � = {0.5|i−j |}i,j=1,...,p

p = 50 p = 200

TL TW TS TL TW TS

h(1) H
(6)
0

0 4.83 (0.88) 4.50 (0.85) 4.67 (0.86) 4.83 (0.88) 4.83 (0.88) 4.83 (0.88)

0.2 28.17 (1.84) 28.17 (1.84) 28.50 (1.84) 28.50 (1.84) 28.50 (1.84) 28.50 (1.84)

0.4 80.33 (1.62) 80.17 (1.63) 80.33 (1.62) 79.83 (1.64) 79.83 (1.64) 79.83 (1.64)

0.8 99.83 (0.17) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

h(1) H
(7)
0

0 4.50 (0.85) 4.50 (0.85) 4.50 (0.85) 5.00 (0.89) 5.00 (0.89) 5.00 (0.89)

0.2 18.17 (1.57) 18.33 (1.58) 18.33 (1.58) 18.33 (1.58) 18.33 (1.58) 18.33 (1.58)

0.4 53.83 (2.04) 54.17 (2.03) 54.00 (2.03) 57.33 (2.02) 57.33 (2.02) 57.33 (2.02)

0.8 98.50 (0.50) 99.00 (0.41) 99.00 (0.41) 98.50 (0.50) 98.50 (0.50) 98.50 (0.50)

h(1) H
(8)
0

0 5.17(0.90) 5.00 (0.89) 5.17 (0.90) 5.67 (0.94) 5.67 (0.94) 5.67 (0.94)

0.2 14.33(1.43) 14.33 (1.43) 14.33 (1.43) 13.67 (1.40) 13.67 (1.40) 13.67 (1.40)

0.4 42.00(2.01) 42.17 (2.02) 42.17 (2.02) 41.67 (2.01) 41.67 (2.01) 41.67 (2.01)

0.8 92.83(1.05) 92.83 (1.05) 92.83 (1.05) 93.00 (1.04) 93.00 (1.04) 93.00 (1.04)

4.2. Logistic regression. In this example, we generate data with sample size
n = 300 from the logistic regression model

logit
{
Pr(Y = 1|X)

} = 2X1 − (
2 + h(1))X2 + h(2)X3,

where logit(p) = log{p/(1 − p)}, the logit link function, and X ∼ N(0p,�).

4.2.1. Testing linear hypothesis. We consider the same linear hypotheses as
those in Section 4.1.1:

H
(1)
0 : β0,1 + β0,2 = 0 vs H(1)

a : β0,1 + β0,2 = 0,

H
(2)
0 : β0,2 + β0,3 = −2 vs H(2)

a : β0,2 + β0,3 = −2,

H
(3)
0 : β0,3 + β0,4 = 0 vs H(3)

a : β0,3 + β0,4 = 0.

Similarly, we set h(2) = 0 when testing H
(1)
0 , and set h(1) = 0 when testing H

(2)
0 .

Therefore, H
(1)
0 is equivalent to h(1) = 0 and H

(2)
0 is equivalent to h(2) = 0. We

use the same 4 settings described in Section 4.1.1. For each of the four settings, we
set h(j) = 0.2,0.4,0.8 under H

(j)
a . The rejection probabilities for H

(1)
0 and H

(2)
0
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over 600 replications are given in Table S4 in the Supplementary Material. We
also plot the kernel density estimates of three test statistics under H

(1)
0 and H

(2)
0

in Figures S4, S5 and S6 in the Supplementary Material. The findings are very
similar to those in the previous examples.

4.2.2. Testing univariate parameter. To compare the proposed partial penal-
ized Wald (TW ), score (TS) and likelihood ratio (TL) test statistics with the Wald
test based on the desparsified Lasso estimator (T D

W ) and the decorrelated score test
(T D

S ), we consider testing the following hypotheses:

H
(4)
0 : β0,2 = −2 vs H(4)

a : β0,2 = −2,

H
(5)
0 : β0,3 = 0 vs H(5)

a : β0,3 = 0.

Similar to Section 4.1.2, we set h(2) = 0 when testing H
(4)
0 , and set h(1) = 0

when testing H
(5)
0 . We set h(1) = 0 under H

(4)
0 , h(1) = 0.2,0.4,0.8 under H

(4)
a and

set h(2) = 0 under H
(5)
0 , h(2) = 0.2,0.4,0.8 under H

(5)
a . We consider the same 4

settings described in Section 4.1.1. The test statistic T D
W is computed via the R

package hdi and T D
S is obtained according to Section 4.2 of Ning and Liu (2017).

We compute the initial estimator β̂ in T D
S by fitting a penalized logistic regression

with SCAD penalty function, and calculate ω̂ by fitting a penalized linear regres-
sion with l1 penalty function. These penalized regressions are implemented via the
R package ncvreg. We report the rejection probabilities of TW ,TS ,TL,T D

W and
T D

S in Table S5 in the Supplementary Material, based on 600 simulation replica-
tions.

Based on the results, it can be seen that the Type I error rates of T D
W and T D

S are

significantly larger than the nominal level in almost all of the cases for testing H
(4)
0 .

On the other hand, the Type I error rates of the proposed test statistics are close to
the nominal level under H

(4)
0 . Besides, under H

(5)
a , the powers of the proposed test

statistics are greater than or equal to T D
W and T D

S in all cases.

4.2.3. Effects on m. As in Section 4.1.3, we further examine the proposed test
statistics by allowing more regression coefficients to appear in the linear hypothe-
ses. Similarly, we consider the following three pairs of hypotheses:

H
(6)
0 :

4∑
j=1

β0,j = 0 vs H(6)
a :

4∑
j=1

β0,j = 0,

H
(7)
0 :

8∑
j=1

β0,j = 0 vs H(7)
a :

8∑
j=1

β0,j = 0,

H
(8)
0 :

12∑
j=1

β0,j = 0 vs H(8)
a :

12∑
j=1

β0,j = 0.
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We set h(2) = 0, and set h(1) = 0 under the null hypotheses, h(1) = 0.4,0.8,1.6 un-
der the alternative hypotheses. The same 4 settings described in Section 4.1.1 are
used. The rejection probabilities of the proposed test statistics are reported in Ta-
ble S6 in the Supplementary Material. Results are averaged over 600 replications.
Findings are very similar to those in Section 4.1.3.

5. Technical proofs. This section consists of the proof of Theorem 3.1. To
establish Theorem 3.1, we need the following lemma. The proof of this lemma is
given in Section 5.1. For any symmetric and positive definite matrix A ∈ R

q×q ,
it follows from the spectral theorem that A = UT �U for some orthogonal ma-
trix U and diagonal matrix � = diag(λ1, . . . , λq). Since the diagonal elements
in � are positive, we use �1/2 and �−1/2 to denote the diagonal matrices
diag(λ

1/2
1 , . . . , λ

1/2
q ) and diag(λ

−1/2
1 , . . . , λ

−1/2
q ), respectively. In addition, we de-

fine A1/2 = UT �1/2U and A−1/2 = UT �−1/2U .

LEMMA 5.1. Under the conditions in Theorem 3.1, we have

λmax(Kn) = O(1),(5.1)

λmax
(
K1/2

n

) = O(1),(5.2)

λmax
(
K−1/2

n

) = O(1),(5.3)

λmax
((

C�mmCT )−1) = O(1),(5.4) ∥∥�−1/2C
∥∥

2 = O(1),(5.5) ∥∥�1/2(C�̂a,mmCT )−1
�1/2 − I

∥∥
2 = Op

(
s + m√

n

)
,(5.6)

∥∥I − K1/2
n K̂

−1
n,0K

1/2
n

∥∥
2 = Op

(
s + m√

n

)
,(5.7)

where � = C�mmCT and

K̂n,0 = 1

n

(
XT

M�(Xβ̂0)XM XT
M�(Xβ̂0)XS

XT
S �(Xβ̂0)XM XT

S �(Xβ̂0)XS

)
.

We break the proof into four steps. In the first three steps, we show TW/r , TS/r

and TL/r are equivalent to T0/r , respectively, where

T0 = 1

φ0
(ωn + √

nhn)
T (C�mmCT )−1

(ωn + √
nhn)

and

ωn = 1√
n

(
CT

OT
s×r

)T

K−1
n

(
XT

M
XT

S

){
Y − μ(Xβ0)

}
.

In the final step, we show the χ2 approximation (3.5) holds for TW ,TS and TL.
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Step 1: We first show that TW/r is equivalent to T0/r . It follows from Theo-
rem 2.1 that

√
n

(
β̂a,M − β0,M
β̂a,S − β0,S

)
= 1√

n
K−1

n

(
XT

M
XT

S

){
Y − μ(Xβ0)

}+ Ra

for some vector Ra that satisfies

(5.8) ‖Ra‖2 = op(1).

Therefore, we have

(5.9)
√

nC(β̂a,M − β0,M) = ωn + CRa,J0,

where J0 = [1, . . . ,m]. Since Cβ0,M = t + hn, it follows from (5.9) that
√

n(Cβ̂a,M − t) = ωn + CRa,J0 + √
nhn,

and hence

(5.10)
√

n�−1/2(Cβ̂a,M − t) = �−1/2(ωn + CRa,J0 + √
nhn).

By (5.8) and (5.5) in Lemma 5.1, we have∥∥�−1/2CRa,J0

∥∥
2 ≤ ∥∥�−1/2C

∥∥‖Ra,J0‖2 ≤ ∥∥�−1/2C
∥∥‖Ra‖2 = op(1).

This together with (5.10) gives

(5.11)
√

n�−1/2(Cβ̂a,M − t) = �−1/2(ωn + √
nhn) + op(1).

Note that

E
∥∥�−1/2ωn

∥∥2
2 = tr

(
�−1/2Eωnω

T
n �−1/2) = φ0 tr

(
�−1/2��−1/2) = rφ0.

By Markov’s inequality, we have

(5.12)
∥∥�−1/2ωn

∥∥
2 = Op(

√
r).

Besides, it follows from (5.4) in Lemma 5.1 and Condition (A4) that

(5.13)
∥∥√n�−1/2hn

∥∥
2 = O(

√
r).

This together with (5.11) and (5.12) implies that

(5.14)
∥∥√n�−1/2(Cβ̂a,M − t)

∥∥
2 = Op(

√
r).

Combining this together with (5.6) in Lemma 5.1 gives∥∥{√n�−1/2(Cβ̂a,M − t)
}T {

�1/2(C�̂a,mmCT )−1
�1/2 − I

}
× {√

n�−1/2(Cβ̂a,M − t)
}∥∥2

2

≤ ∥∥{√n�−1/2(Cβ̂a,M − t)
}∥∥2

2

∥∥{�1/2(C�̂a,mmCT )−1
�1/2 − I

}∥∥
2

= Op

(
r(s + m)√

n

)
.
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The last term is op(r) under the condition s + m = o(n1/3). By the definition of
TW , we have shown that

(5.15) φ̂|TW − TW,0| = op(r),

where

TW,0 = n(Cβ̂a,M − t)T �−1(Cβ̂a,M − t)

φ̂
.

Under the conditions in Theorem 3.1, we have φ̂ = φ0 + op(1). Since φ0 > 0, we
have

(5.16) 1/φ̂ = Op(1),

which together with (5.15) entails that TW = TW,0 + op(r).
It follows from (5.10)–(5.13) and the condition s + m = o(n1/3) that

(5.17)

φ̂TW,0 = ∥∥�−1/2ωn + √
n�−1/2hn + op(1)

∥∥2
2

= ∥∥�−1/2ωn + √
n�−1/2hn

∥∥2
2 + op(1) + op

(
�−1/2(ωn + √

nhn)
)

= ∥∥�−1/2ωn + √
n�−1/2hn

∥∥2
2 + op(1) + op(r)

= ∥∥�−1/2ωn + √
n�−1/2hn

∥∥2
2 + op(r) = φ̂TW,1 + op(r),

where

TW,1 = ‖�−1/2ωn + √
n�−1/2hn‖2

2

φ̂
.

By (5.16), we obtain TW,0 = TW,1 + op(r), and hence TW = TW,1 + op(r). In the
following, we show TW,1 = T0 + op(r).

Observe that

(5.18) |TW,1 − T0| = |φ0 − φ̂|
φ̂φ0

∥∥�−1/2ωn + √
n�−1/2hn

∥∥2
2.

It follows from (5.12), (5.13), (5.16) and the condition |φ̂ −φ0| = op(1) that right-
hand side (RHS) of (5.18) is of the order op(r). This proves TW,1 = T0 + op(r).

Step 2: We show that TS/r is equivalent to T0/r . Based on the proof of Theo-
rem 2.1 in Section S5.1 of the Supplementary Material, we have

(5.19)

1√
n

(
XT

M
XT

S

){
Y − μ(Xβ̂0)

}

= 1√
n

(
XT

M
XT

S

)T {
Y − μ(Xβ0)

}

− 1√
n

(
XT

M
XT

S

)
�(Xβ0)

(
XT

M
XT

S

)T (
β̂0,M − β0,M

β̂0,S − β0,S

)
+ op(1)
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and

(5.20)

√
n

(
β̂0,M − β0,M
β̂0,S − β0,S

)
= 1√

n
K−1/2

n (I − P n)K
−1/2
n

(
XT

M
XT

S

){
Y − μ(Xβ0)

}
− √

nK−1
n

(
CT

OT
r×s

)
�−1hn + op(1).

Combining (5.1) with (5.20) gives

√
nKn

(
β̂0,M − β0,M
β̂0,S − β0,S

)
= 1√

n
K1/2

n (I − P n)K
−1/2
n

(
XT

M
XT

S

){
Y − μ(Xβ0)

}
− √

n

(
CT

OT
r×s

)
�−1hn + op(1),

which together with (5.19) implies that

1√
n

(
XT

M
XT

S

){
Y − μ(Xβ̂0)

}

= 1√
n

(
XT

M
XT

S

)T {
Y − μ(Xβ0)

}+ op(1)

− 1√
n
K1/2

n (I − P n)K
−1/2
n

(
XT

M
XT

S

){
Y − μ(Xβ0)

}
+ √

n

(
CT

OT
r×s

)
�−1hn

= 1√
n
K1/2

n P nK
−1/2
n

(
XT

M
XT

S

){
Y − μ(Xβ0)

}
+ √

n

(
CT

OT
r×s

)
�−1hn + op(1).

By (5.3), we have

(5.21)

1√
n
K−1/2

n

(
XT

M
XT

S

){
Y − μ(Xβ̂0)

} = 1√
n
P nK

−1/2
n

(
XT

M
XT

S

){
Y − μ(Xβ0)

}
+ √

nK−1/2
n

(
CT

OT
r×s

)
�−1hn + op(1).

It follows from (5.5) and (5.13) that∥∥∥∥∥
(

CT

OT
r×s

)
�−1hn

∥∥∥∥∥
2

≤ ∥∥CT �−1/2∥∥
2

∥∥�−1/2hn

∥∥
2 = Op(

√
r/n).
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This together with (5.3) yields

(5.22)
√

n

∥∥∥∥∥K−1/2
n

(
CT

OT
r×s

)
�−1hn

∥∥∥∥∥
2

= Op(
√

r).

Notice that

E
∥∥∥∥ 1√

n
P nK

−1/2
n

(
XT

M
XT

S

){
Y − μ(Xβ0)

}∥∥∥∥2

2
= tr(P n) = rank(P n) = r.

It follows from Markov’s equality that∥∥∥∥ 1√
n
P nK

−1/2
n

(
XT

M
XT

S

){
Y − μ(Xβ0)

}∥∥∥∥
2
= Op(

√
r).

Combining this with (5.21) and (5.22) yields

(5.23)
∥∥∥∥ 1√

n
K−1/2

n

(
XT

M
XT

S

){
Y − μ(Xβ̂0)

}∥∥∥∥
2
= Op(

√
r).

This together with (5.7) and the condition s + m = o(n1/3) gives that∣∣∣∣1n
{(

XT
M

XT
S

){
Y − μ(Xβ̂0)

}}T (
K−1

n − K̂
−1
n,0

)(XT
M

XT
S

){
Y − μ(Xβ̂0)

}∣∣∣∣
≤ 1

n

∥∥∥∥∥K−1/2
n

(
XT

M
XT

S

){
Y − μ(Xβ̂0)

}∥∥∥∥∥
2

2

∥∥I − K1/2
n K̂

−1
n,0K

1/2
n

∥∥
2

= Op

(
r(s + m)√

n

)
= op(r).

When Ŝ0 = S, we have

φ̂TS = 1

n

{(
XT

M
XT

S

){
Y − μ(Xβ̂0)

}}T

K̂
−1
n,0

(
XT

M
XT

S

){
Y − μ(Xβ̂0)

}
.

Since Pr(Ŝ0 = S) → 1, we obtain φ̂|TS − TS,0| = op(r), where

TS,0 = 1

nφ̂

{(
XT

M
XT

S

){
Y − μ(Xβ̂0)

}}T

K−1
n

(
XT

M
XT

S

){
Y − μ(Xβ̂0)

}
.

This together with (5.16) implies that |TS −TS,0| = op(r). Using similar arguments
in (5.17) and (5.18), we can show that TS,0/r is equivalent to TS,1/r , where TS,1
is defined as

1

φ0

∥∥∥∥ 1√
n
P nK

−1/2
n

(
XT

M
XT

S

){
Y − μ(Xβ0)

}+ √
nK−1/2

n

(
CT

OT
r×s

)
�−1hn

∥∥∥∥2

2
.
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Recall that

P n = K−1/2
n

(
CT

OT
r×s

)
�−1

(
CT

OT
r×s

)T

K−1/2
n ,

we have

TS,1 = 1

φ0

∥∥∥∥∥K−1/2
n

(
CT

OT
r×s

)
�−1ωn + √

nK−1/2
n

(
CT

OT
r×s

)
�−1hn

∥∥∥∥∥
2

2

= 1

φ0

∥∥�−1/2ωn + √
n�−1/2hn

∥∥2
2

= T0.

This proves the equivalence between TS/r and T0/r .
Step 3: By Theorem 2.1, we have

√
n

(
β̂a,M − β̂0,M
β̂a,S − β̂0,S

)
= 1√

n
K−1/2

n P nK
−1/2
n

(
XT

M
XT

S

){
Y − μ(Xβ0)

}
+ √

nK−1/2
n P nK

−1/2
n

(
CT

(
CCT

)−1
hn

0

)
+ op(1).

Notice that

K−1/2
n P nK

−1/2
n

(
CT

(
CCT

)−1
hn

0

)

= K−1
n

(
CT

OT
r×s

)
�−1

(
CT

OT
r×s

)T (
CT

(
CCT

)−1
hn

0

)

= K−1
n

(
CT

OT
r×s

)
�−1hn.

It follows that

(5.24)

√
n

(
β̂a,M − β̂0,M
β̂a,S − β̂0,S

)
= 1√

n
K−1/2

n P nK
−1/2
n

(
XT

M
XT

S

){
Y − μ(Xβ0)

}
+ √

nK−1
n

(
CT

OT
r×s

)
�−1hn + op(1).

Similar to (5.23), we can show that

(5.25) n‖β̂a,M∪S − β̂0,M∪S‖2
2 = Op(r).
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Under the event β̂0,M∪S = β̂a,M∪S = 0, using third-order Taylor expansion,
we obtain that

Ln(β̂0) − Ln(β̂a) = 1

n

(
β̂0,M − β̂a,M
β̂0,S − β̂a,S

)T (
XT

M
XT

S

){
Y − μ(Xβ̂a)

}

− 1

2n

(
β̂0,M − β̂a,M
β̂0,S − β̂a,S

)T (
XT

M
XT

S

)

× �(Xβ̂a)

(
XT

M
XT

S

)T (
β̂0,M − β̂a,M
β̂0,S − β̂a,S

)

+
(

β̂0,M − β̂a,M
β̂0,S − β̂a,S

)T

R,

where n‖R‖∞ is upper bounded by

max
j∈M∪S

∣∣(β̂0,M∪S − β̂a,M∪S)T XT
M∪S

× diag
{∣∣Xj

∣∣ ◦ ∣∣b′′′(Xβ∗)∣∣}XM∪S(β̂0,M∪S − β̂a,M∪S)
∣∣

≤ ‖β̂0,M∪S − β̂a,M∪S‖2
2

× max
j∈M∪S

λmax
(
XT

M∪S diag
{∣∣Xj

∣∣ ◦ ∣∣b′′′(Xβ∗)∣∣}XM∪S

)
for some β∗ lying on the line segment between β̂a and β̂0. By Theorem 2.1, we
have β∗

(M∪S)c = 0 and ‖β∗
M∪S − β0,M∪S‖2 ≤ √

(s + m) logn/n with probability
tending to 1. By Condition (A1), we obtain

‖R‖∞ = Op

(
r

n

)
.

This together with (5.25) yields that∥∥∥∥∥∥
(

β̂a,M − β̂0,M
β̂a,S − β̂0,S

)T

R

∥∥∥∥∥∥
2

≤ ‖β̂a,M∪S − β̂0,M∪S‖1‖R‖∞ = op

(
r

n

√
r√
n

√
s + m

)
.

The last term is op(
√

r/n) since r ≤ s + m and s + m = o(n1/3).
Similarly, we can show∥∥∥∥∥∥

(
β̂a,M − β̂0,M
β̂a,S − β̂0,S

)T (
XT

M
XT

S

)
�(Xβ̂a)

(
XT

M
XT

S

)T (
β̂a,M − β̂0,M
β̂a,S − β̂0,S

)

−
(

β̂a,M − β̂0,M
β̂a,S − β̂0,S

)T (
XT

M
XT

S

)
�(Xβ0)

(
XT

M
XT

S

)T (
β̂a,M − β̂0,M
β̂a,S − β̂0,S

)∥∥∥∥∥∥
2

= op(
√

r).
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As a result, we have

(5.26)

n
{
Ln(β̂0) − Ln(β̂a)

} =
(

β̂0,M − β̂a,M
β̂0,S − β̂a,S

)T (
XT

M
XT

S

){
Y − μ(Xβ̂a)

}

− n

2

(
β̂0,M − β̂a,M
β̂0,S − β̂a,S

)T

Kn

(
β̂0,M − β̂a,M
β̂0,S − β̂a,S

)
+ op(

√
r).

Recall that β̂a is the maximizer of nLn(β) − n
∑

j /∈M pλn,a (|βj |). By Theo-

rem 2.1, we have with probability tending to 1 that minj∈S |β̂a,j | ≥ dn. Under the
condition p′

λn,a
(dn) = o((s + m)−1/2n−1/2), we have(

XT
M

XT
S

){
Y − μ(Xβ̂a)

} = n

(
0

ρ̄(β̂a,S, λn,a)

)
= op

(
n1/2).

This together with (5.25) yields(
β̂0,M − β̂a,M
β̂0,S − β̂a,S

)T (
XT

M
XT

S

){
Y − μ(Xβ̂a)

} = op(
√

r).

By (5.26), we obtain that

n
{
Ln(β̂0) − Ln(β̂a)

} = −n

2

(
β̂0,M − β̂a,M
β̂0,S − β̂a,S

)T

Kn

(
β̂0,M − β̂a,M
β̂0,S − β̂a,S

)
+ op(

√
r).

In view of (5.24), using similar arguments in (5.17), we can show that∣∣∣∣n
(

β̂0,M − β̂a,M
β̂0,S − β̂a,S

)T

Kn

(
β̂0,M − β̂a,M
β̂0,S − β̂a,S

)

− 1

n

∥∥∥∥∥P nK
−1/2
n

(
XT

M
XT

S

){
Y − μ(Xβ0)

}+ nK−1/2
n

(
CT

OT
r×s

)
�−1hn

∥∥∥∥∥
2

2

∣∣∣∣
= op(

√
r).

As a result, we have

1

n

∥∥∥∥∥P nK
−1/2
n

(
XT

M
XT

S

){
Y − μ(Xβ0)

}+ nK−1/2
n

(
CT

OT
r×s

)
�−1hn

∥∥∥∥∥
2

2

− 2n
{
Ln(β̂a) − Ln(β̂0)

}
= op(

√
r).
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By (5.16), this shows ∣∣∣∣TL − φ0

φ̂
T0

∣∣∣∣ = op(r).

Under the condition |φ̂ − φ0| = op(1), we can show |T0(1 − φ0/φ̂)| = op(r). As a
result, we have TL = T0 + op(r).

Step 4: We first show the χ2 approximation (3.5) holds for T = T0. Recall that

T0 = 1

φ0

∥∥∥∥ 1√
n
�−1/2ωn + √

n�−1/2hn

∥∥∥∥2

2
.

By the definition of ωn, we have

1√
nφ0

�−1/2ωn = 1√
nφ0

�−1/2

(
CT

OT
r×s

)T

K−1
n

(
XT

M
XT

S

){
Y − μ(Xβ0)

}

=
n∑

i=1

1√
nφ0

�−1/2

(
CT

OT
r×s

)T

K−1
n

{
Yi − μ

(
βT

0 Xi

)}(Xi,M
Xi,S

)

=
n∑

i=1

ξ i .

With some calculation, we can show that

(5.27)
n∑
i

cov(ξ i ) = I r .

It follows from Condition (A3) that

max
i=1,...,n

E
( |Yi − μ(βT

0 Xi )|3
6M3 M2

)

≤ max
i=1,...,n

E
{

exp
( |Yi − μ(βT

0 Xi )|
M

)
− 1 − |Yi − μ(βT

0 Xi )|
M

}
M2 ≤ v0

2
.

This implies maxi=1,...,n E|Yi − μ(βT
0 Xi )|3 = O(1).

Hence, with some calculations, we have

r1/4
n∑
i

E‖ξ i‖3
2

= r1/4

(nφ0)3/2

n∑
i

E

∥∥∥∥∥∥�−1/2

(
CT

OT
r×s

)T

K−1
n Xi,M∪S

{
Yi − μ

(
βT

0 Xi

)}∥∥∥∥∥∥
3

2

= r1/4

(nφ0)3/2

n∑
i

∥∥∥∥∥∥�−1/2

(
CT

OT
r×s

)T

K−1
n Xi,M∪S

∥∥∥∥∥∥
3

2

E
∣∣Yi − μ

(
βT

0 Xi

)∣∣3
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= O(1)
r1/4

(nφ0)3/2

n∑
i

∥∥∥∥∥∥�−1/2

(
CT

OT
r×s

)T

K−1
n Xi,M∪S

∥∥∥∥∥∥
3

2

≤ O(1)
r1/4

(nφ0)3/2

n∑
i

∥∥∥∥∥∥�−1/2

(
CT

OT
r×s

)T

K−1/2
n

∥∥∥∥∥∥
3

2

∥∥K−1/2
n Xi,M∪S

∥∥3
2

≤ O(1)
r1/4

(nφ0)3/2

n∑
i=1

{
(Xi,M∪S)T K−1

n Xi,M∪S
}3/2 = o(1),

where O(1) denotes some positive constant, the first inequality follows from the
Cauchy–Schwarz inequality, the last inequality follows from the fact that∥∥∥∥∥∥�−1/2

(
CT

OT
r×s

)T

K−1/2
n

∥∥∥∥∥∥
2

2

= λmax

⎧⎨⎩�−1/2

(
CT

OT
r×s

)T

K−1
n

(
CT

OT
r×s

)
�−1/2

⎫⎬⎭
= 1,

and the last equality is due to Condition (3.4).
This together with (5.27) and an application of Lemma S.6 in the Supplementary

Material gives that

(5.28) sup
C

∣∣∣∣Pr
(

1√
nφ0

�−1/2ω0 ∈ C
)

− Pr(Z ∈ C)

∣∣∣∣ → 0,

where Z ∈ R
r stands for a mean zero Gaussian random vector with identity co-

variance matrix, and the supremum is taken over all convex sets C ∈ R
r .

Consider the following class of sets:

Cx =
{
z ∈R

r :
∥∥∥∥z −

√
n

φ0
�−1/2hn

∥∥∥∥
2
≤ x

}
,

indexed by x ∈ R. It follows from (5.28) that

sup
x

∣∣∣∣Pr
(

1√
nφ0

�−1/2ω0 ∈ Cx

)
− Pr(Z ∈ Cx)

∣∣∣∣ → 0.

Note that 1√
nφ0

�−1ω0 ∈ Cx is equivalent to T0 ≤ x, and Pr(Z ∈ Cx) =
Pr(χ2(r, γn) ≤ x) where γn = nhT

n �−1/2hn/φ0. This implies

(5.29) sup
x

∣∣Pr(T0 ≤ x) − Pr
(
χ2(r, γn) ≤ x

)∣∣ → 0.

Consider any statistic T ∗ = T0 + op(r). For any x and ε > 0, it follows from
(5.29) that

(5.30)

Pr
(
χ2(r, γn) ≤ x − rε

)+ o(1) ≤ Pr(T0 ≤ x − rε) + o(1)

≤ Pr
(
T ∗ ≤ x

) ≤ Pr(T0 ≤ x + rε) + o(1)

≤ Pr
(
χ2(r, γn) ≤ x + rε

)+ o(1).
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Besides, by Lemma S.7, we have

(5.31) lim
ε→0

lim sup
n

∣∣Pr
(
χ2(r, γn) ≤ x + rε

)− Pr
(
χ2(r, γn) ≤ x − rε

)∣∣ → 0.

Combining (5.30) with (5.31), we obtain that

(5.32) sup
x

∣∣Pr
(
T ∗ ≤ x

)− Pr
(
χ2(r, γn) ≤ x

)∣∣ → 0.

In the first three steps, we have shown T0 = TS + op(1) = TW + op(1) = TL +
op(1). This together with (5.32) implies that the χ2 approximation holds for our
partial penalized Wald, score and likelihood ratio statistics. The proof is hence
complete.

5.1. Proof of Lemma 5.1. Assertion (5.1) is directly implies by Condi-
tion (A1). This means the square root of the maximum eigenvalue of Kn is O(1).
By definition, this proves (5.2). Under Condition (A1), we have λmax(K

−1
n ) =

O(1). Using the same arguments, we have λmax(K
−1/2
n ) = O(1). Hence, (5.3) is

proven. We now show (5.4) holds. It follows from the condition λmax((CCT )−1) =
O(1) in Condition (A4) that lim infn λmin(CCT )−1 > 0, and hence

a0
�= lim inf

n
inf

a∈Rr :‖a‖2=1

∥∥CT a
∥∥2

2 = lim inf
n

inf
a∈Rr :‖a‖2=1

aT CCT a > 0.

This implies that for sufficiently large n, we have

(5.33)
∥∥CT a

∥∥
2 >

√
a0/2‖a‖2 ∀a = 0.

By (5.1), we have lim infn λmin(�n) > 0, or equivalently,

inf
a∈Rm+s :‖a‖2=1

lim inf
n

aT �na > 0.

Hence, we have

inf
a∈Rm+s :‖a‖2=1,ac

J0
=0

lim inf
n

aT �na > 0,

where J0 = [1, . . . ,m]. Note that this implies

inf
a∈Rm+s :‖a‖2=1

lim inf
n

aT �mma > 0.

Therefore, we obtain

(5.34) lim inf
n

λmin(�mm) > 0.

Combining this together with (5.33) yields

inf
a∈Rr :‖a‖2=1

lim inf
n

aT C�mmCT a ≥ inf
a∈Rm:‖a‖2=√

a0/2
lim inf

n
aT �mma > 0.
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By definition, this suggests

lim inf
n

λmin
(
C�mmCT ) > 0,

or equivalently,

λmax
((

C�mmCT )−1) = O(1).

This gives (5.4).
Using the Cauchy–Schwarz inequality, we have∥∥(C�mmCT )−1/2

C
∥∥

2 ≤ ∥∥(C�mmCT )−1/2
C�1/2

mm

∥∥
2︸ ︷︷ ︸

I1

∥∥�−1/2
mm

∥∥
2︸ ︷︷ ︸

I2

.

Observe that

(5.35) I 2
1 = λmax

((
C�mmCT )−1/2

C�mmCT (C�mmCT )−1/2) = 1.

Besides, by (5.34), we have

I 2
2 = λmax

(
(�mm)−1) = O(1),

which together with (5.35) implies that I1I2 = O(1). This proves (5.5).
We now show (5.6) holds. Assume for now, we have

(5.36) ‖Kn − K̂n,a‖2 = Op

(
s + m√

n

)
,

where

K̂n,a = 1

n

(
XT

M�(Xβ̂a)XM XT
M�(Xβ̂a)XS

XT
S �(Xβ̂a)XM XT

S �(Xβ̂a)XS

)
.

Note that

lim inf
n

λmin(K̂n,a) ≥ lim inf
n

inf
a∈Rm+s

‖a‖2=1

aT Kna − lim sup
n

sup
a∈Rm+s

‖a‖2=1

∣∣aT (K̂n,a − Kn)a
∣∣

≥ lim inf
n

λmin(Kn,a) − lim sup
n

‖Kn − K̂n,a‖2.

Under Condition (A1), we have lim infn λmin(Kn) > 0. Under the condition
max(s,m) = o(n1/2), this together with (5.36) implies

(5.37) lim inf
n

λmin(K̂n,a) > 0,

with probability tending to 1. Hence, we have

(5.38)

∥∥K−1
n − K̂

−1
n,a

∥∥
2 = ∥∥K−1

n (Kn − K̂n,a)K̂
−1
n,a

∥∥
2

≤ λmax
(
K−1

n

)‖Kn − K̂n,a‖2λmax
(
K̂

−1
n

) = Op

(
s + m√

n

)
.
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By Lemma S.5, this gives

sup
a∈Rm+s :‖a‖2=1

∣∣aT (K−1
n − K̂

−1
n,a

)
a
∣∣ = Op

(
s + m√

n

)
,

and hence,

sup
a∈Rm+s :‖a‖2=1,ac

J0
=0

∣∣aT (K−1
n − K̂

−1
n,a

)
a
∣∣ = Op

(
s + m√

n

)
,

where J0 = [1, . . . ,m]. Using Lemma S.5 again, we obtain

(5.39)
∥∥(K−1

n

)
J0,J0

− (
K̂

−1
n,a

)
J0,J0

∥∥
2 = Op

(
s + m√

n

)
.

By definition, we have �mm = (K−1
n )J0,J0 . According to Theorem 2.1, we have

that with probability tending to 1, Ŝa = S where Ŝa = {j ∈ Mc : β̂a,j = 0}. When

Ŝa = S, we have K̂
−1
n,a = �̂a and (K̂

−1
n,a)J0,J0 = �̂a,mm. Therefore, by (5.39), we

have

‖�mm − �̂a,mm‖2 = Op

(
s + m√

n

)
.

Using the Cauchy–Schwarz inequality, we obtain

(5.40)

∥∥�−1/2
mm (�mm − �̂a,mm)�−1/2

mm

∥∥
2

≤ ∥∥�−1/2
mm

∥∥2
2‖�mm − �̂a,mm‖2 = Op

(
s + m√

n

)
by (5.34). Let � = C�mmCT , we obtain

(5.41)

∥∥�−1/2C(�mm − �̂a,mm)CT �−1/2∥∥
2

≤ ∥∥�−1/2C�1/2
mm�−1/2

mm (�mm − �̂a,mm)�−1/2
mm �1/2

mmCT �−1/2∥∥
2

≤ ∥∥�−1/2C�1/2
mm

∥∥2
2

∥∥�−1/2
mm (�mm − �̂a,mm)�−1/2

mm

∥∥
2

= Op

(
s + m√

n

)
by (5.40) and that∥∥�−1/2C�1/2

mm

∥∥2
2 = λmax

(
�−1/2��−1/2) = O(1).

Similar to (5.37), by (5.41) we can show that

(5.42) lim inf
n

λmin
(
�−1/2C�̂a,mmCT �−1/2) > 0.
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Combining (5.41) together with (5.42), we obtain∥∥(�−1/2C�̂a,mmCT �−1/2)−1 − Im

∥∥
2

≤ ∥∥(�−1/2C�̂a,mmCT �−1/2)−1∥∥
2

∥∥�−1/2C(�mm − �̂a,mm)CT �−1/2∥∥
2

= Op

(
s + m√

n

)
.

This proves (5.6).
Similar to (5.38), we can show∥∥K−1

n − K̂
−1
n,0

∥∥
2 = Op

(
s + m√

n

)
.

By (5.2), we obtain∥∥I − K1/2
n K̂

−1
n,0K

1/2
n

∥∥
2 ≤ ∥∥K1/2

n

∥∥
2

∥∥K−1
n − K̂

−1
n,0

∥∥
2

∥∥K1/2
n

∥∥
2 = Op

(
s + m√

n

)
.

This proves (5.7).
It remains to show (5.36). Since Kn and K̂n,a are symmetric, by Lemma S.8 it

suffices to show

‖Kn − K̂n,a‖∞ = Op

(
s + m√

n

)
.

By definition, this requires to show

max
j∈S∪M

∥∥(Xj )T {�(Xβ̂a) − �(Xβ0)
}
XM∪S

∥∥
1 = Op

(√
n(s + m)

)
.

For any vector a ∈ R
q , we have ‖a‖1 ≤ √

q‖a‖2. Hence, it suffices to show

(5.43) max
j∈S∪M

∥∥(Xj )T {�(Xβ̂a) − �(Xβ0)
}
XM∪S

∥∥
2 = Op

(√
n(s + m)

)
.

Using Taylor’s theorem, we have

(5.44)

(
Xj )T {�(Xβ̂a) − �(Xβ0)

}
XM∪S

≤
∫ 1

0
(β̂a − β0)

T X diag
{
Xj ◦ b′′′(X{

t β̂a + (1 − t)β0
})}

XM∪S dt.

By Theorem 2.1, we have Pr(β̂a ∈ N0) → 1. Hence, we have

Pr
( ⋃

t∈[0,1]

{
t β̂a + (1 − t)β0 ∈ N0

}) → 1.

By Condition (A1),

sup
t∈[0,1]

λmax
{
XM∪S diag

(
Xj ◦ b′′′(X{

t β̂a + (1 − t)β0
}))

XM∪S
} = Op(n).



2702 SHI, SONG, CHEN AND LI

By the Cauchy–Schwarz inequality, we have∥∥(Xj )T {�(Xβ̂a) − �(Xβ0)
}
XM∪S

∥∥
2

≤ sup
t∈[0,1]

∥∥(β̂a − β0)
T X diag

{
Xj ◦ b′′′(X{

t β̂a + (1 − t)β0
})}

XM∪S
∥∥

2

≤ ‖β̂a − β0‖2

× sup
t∈[0,1]

λmax
{
XM∪S diag

(
Xj ◦ b′′′(X{

t β̂a + (1 − t)β0
}))

XM∪S
}

= Op

(√
n(s + m)

)
.

This proves (5.43).
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SUPPLEMENTARY MATERIAL

Supplement to “Linear hypothesis testing for high dimensional generalized
linear models” (DOI: 10.1214/18-AOS1761SUPP; .pdf). This supplemental ma-
terial includes power comparisons with existing test statistics, additional numerical
studies on Poisson regression and a real data application, discussions of Conditions
(A1)–(A4), some technical lemmas and the proof of Theorem 2.1.
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