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We investigate high-dimensional nonconvex penalized regression, where
the number of covariates may grow at an exponential rate. Although recent
asymptotic theory established that there exists a local minimum possessing
the oracle property under general conditions, it is still largely an open prob-
lem how to identify the oracle estimator among potentially multiple local
minima. There are two main obstacles: (1) due to the presence of multiple
minima, the solution path is nonunique and is not guaranteed to contain the
oracle estimator; (2) even if a solution path is known to contain the oracle es-
timator, the optimal tuning parameter depends on many unknown factors and
is hard to estimate. To address these two challenging issues, we first prove that
an easy-to-calculate calibrated CCCP algorithm produces a consistent solu-
tion path which contains the oracle estimator with probability approaching
one. Furthermore, we propose a high-dimensional BIC criterion and show
that it can be applied to the solution path to select the optimal tuning pa-
rameter which asymptotically identifies the oracle estimator. The theory for
a general class of nonconvex penalties in the ultra-high dimensional setup
is established when the random errors follow the sub-Gaussian distribution.
Monte Carlo studies confirm that the calibrated CCCP algorithm combined
with the proposed high-dimensional BIC has desirable performance in iden-
tifying the underlying sparsity pattern for high-dimensional data analysis.

1. Introduction. High-dimensional data, where the number of covariates
p greatly exceeds the sample size n, arise frequently in modern applications in
biology, chemometrics, economics, neuroscience and other scientific fields. To fa-
cilitate the analysis, it is often useful and reasonable to assume that only a small
number of covariates are relevant for modeling the response variable. Under this
sparsity assumption, a widely used approach for analyzing high-dimensional data
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is regularized or penalized regression. This approach estimates the unknown re-
gression coefficients by solving the following penalized regression problem:

min
β∈Rp

{
(2n)−1‖y − Xβ‖2 +

p∑
j=1

pλ

(|βj |)
}
,(1.1)

where y is the vector of responses, X is an n × p matrix of covariates, β =
(β1, . . . , βp)T is the vector of unknown regression coefficients, ‖ · ‖ denotes the
L2 norm (Euclidean norm), and pλ(·) is a penalty function which depends on a
tuning parameter λ > 0. Many commonly used variable selection procedures in
the literature can be cast into the above framework, including the best subset se-
lection, L1 penalized regression or Lasso [Tibshirani (1996)], Bridge regression
[Frank and Friedman (1993)], SCAD [Fan and Li (2001)], MCP [Zhang (2010a)],
among others.

The Lasso penalized regression is computationally attractive and enjoys great
performance in prediction. However, it is known that Lasso requires rather strin-
gent conditions on the design matrix to be variable selection consistent [Zou
(2006), Zhao and Yu (2006)]. Focusing on identifying the unknown sparsity pat-
tern, nonconvex penalized high-dimensional regression has recently received con-
siderable attention. Fan and Li (2001) first systematically studied nonconvex pe-
nalized likelihood for fixed finite dimension p. In particular, they recommended
the SCAD penalty which enjoys the oracle property for variable selection. That is,
it can estimate the zero coefficients as exact zero with probability approaching one,
and estimate the nonzero coefficients as efficiently as if the true sparsity pattern is
known in advance. Fan and Peng (2004) extended these results by allowing p to
grow with n at the rate p = o(n1/5) or p = o(n1/3). For high dimensional noncon-
vex penalized regression with p � n, Kim, Choi and Oh (2008) proved that the
oracle estimator itself is a local minimum of SCAD penalized least squares regres-
sion under very relaxed conditions; Zhang (2010a) proposed a minimax concave
penalty (MCP) and devised a novel PLUS algorithm which when used together can
achieve the oracle property under certain regularity conditions. Important insight
has also been gained through the recent work on theoretical analysis of the global
solution [Kim and Kwon (2012), Zhang and Zhang (2012)]. However, direct com-
putation of the global solution to the nonconvex penalized regression is infeasible
in high dimensional setting.

For practical data analysis, it is critical to find an easy-to-implement procedure
which can find a local solution with satisfactory theoretical property even when
the number of covariates greatly exceeds the sample size. Two challenging issues
remain unsolved. One is the problem of multiple local minima; the other is the
problem of optimal tuning parameter selection.

A direct consequence of the multiple local minima problem is that the solu-
tion path is not unique and is not guaranteed to contain the oracle estimator. This
problem is due to the nature of the nonconvexity of the penalty. To understand it,
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we note that the penalized objective function in (1.1) is nonconvex in β whenever
the convexity of the least squares loss function does not dominate the concavity
of the penalty part. In general, the occurrence of multiple minima is unavoidable
unless strong assumptions are imposed on both the design matrix and the penalty
function. The recent theory for SCAD penalized linear regression [Kim, Choi and
Oh (2008)] and for general nonconcave penalized generalized linear models [Fan
and Lv (2011)] indicates that one of the local minima enjoys the oracle property
but it is still an unsolved problem how to identify the oracle estimator among mul-
tiple minima when p � n. Popularly used algorithms generally only ensure the
convergence to a local minimum, which is not necessarily the oracle estimator.
Numerical evidence in Section 4 suggests that the local minima identified by some
of the popular algorithms have a relatively low probability to recover the unknown
sparsity pattern although it may have small estimation error.

Even if a solution path is known to contain the oracle estimator, identifying
such a desirable estimator from the path is itself a challenging problem in ultra-
high dimension. The main issue is to find the optimal tuning parameter which
yields the oracle estimator. The theoretically optimal tuning parameter does not
have an explicit representation and depends on unknown factors such as the vari-
ance of the unobserved random noise. Cross-validation is commonly adopted in
practice to select the tuning parameter but is observed to often result in overfitting.
In the case of fixed p, Wang, Li and Tsai (2007) rigorously proved that gener-
alized cross-validation leads to an overfitted model with a positive probability for
SCAD-penalized regression. Effective BIC-type criterion for nonconvex penalized
regression has been investigated in Wang, Li and Tsai (2007) and Zhang, Li and
Tsai (2010) for fixed p; and in Wang, Li and Leng (2009) for diverging p (but
p < n). However, to the best of our knowledge, there is still no satisfactory tuning
parameter selection procedure for nonconvex penalized regression in ultra-high
dimension.

The above two main concerns motivate us to consider calibrating nonconvex
penalized regression in ultra-high dimension with the goal to identify the oracle
estimator with high probability. To achieve this, we first prove that a calibration
of the CCCP algorithm [Kim, Choi and Oh (2008)] for nonconvex penalized re-
gression produces a consistent solution path with probability approaching one in
merely two steps under conditions much more relaxed than what would be required
for the Lasso estimator to be model selection consistent. Furthermore, extending
the recent work of Chen and Chen (2008) and Kim, Kwon and Choi (2012) for
Bayesian information criterion (BIC) on high dimensional least squares regression,
we propose a high-dimensional BIC for a nonconvex penalized solution path and
prove its validity under more general conditions when p grows at an exponential
rate. The recent independent work of Zhang (2010b, 2013) devised a multi-stage
convex relaxation scheme and proved that for the capped L1 penalty the algorithm
can find a consistent solution path with probability approaching one under cer-
tain conditions. Despite the similar flavor shared with the algorithm proposed in
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this paper, his algorithm takes multiple steps (which can be very large in practice
depending on the design condition) and the paper has not studied the problem of
tuning parameter selection.

To deepen our understanding of the nonconvex penalized regression, we also de-
rive an interesting auxiliary theoretical result of an upper bound on the L2 distance
between a sparse local solution of nonconvex penalized regression and the oracle
estimator. This result is new and insightful. It suggests that under general regular-
ity conditions a sparse local minimum can often have small estimation error even
though it may not be the oracle estimator. Overall, the theoretical results in this
paper fill in important gaps in the literature, thus substantially enlarge the scope of
applications of nonconvex penalized regression in ultra-high dimension. In Monte
Carlo studies, we demonstrate that the calibrated CCCP algorithm combined with
the proposed high-dimensional BIC is effective in identifying the underlying spar-
sity pattern.

The rest of the paper is organized as follows. In Section 2, we define the nota-
tion, review the CCCP algorithm and introduce the new methodology. In Section 3,
we establish that the proposed calibrated CCCP solution path contains the oracle
estimator with probability approaching one under general conditions, and that the
proposed high-dimensional BIC is able to select the optimal tuning parameter with
probability tending to one. In Section 4, we report numerical results from Monte
Carlo simulations and a real data example. In Section 5, we present an auxiliary
theoretical result which sheds light on the estimation accuracy of a local minimum
of nonconvex penalized regression if it is not the oracle estimator. The proofs are
given in Section 6.

2. Calibrated nonconvex penalized least squares method.

2.1. Notation and setup. Suppose that {(Yi,xi)}ni=1 is a random sample from
the linear regression model

y = Xβ∗ + ε,(2.1)

where y = (Y1, . . . , Yn)
T , X is the n × p nonstochastic design matrix with the

ith row xT
i , β∗ = (β∗

1 , . . . , β∗
p)T is the vector of unknown true parameters, and

ε = (ε1, . . . , εn)
T is a vector of independent and identically distributed random

errors.
We are interested in the case where p = pn greatly exceeds the sample size n.

The vector of the true parameters β∗ is assumed to be sparse in the sense that the
majority of its components are exactly zero. Let A0 = {j :β∗

j �= 0} be the index
set of covariates with nonzero coefficients and let |A0| = q denote the cardinal-
ity of A0. We use d∗ = min{|β∗

j | :β∗
j �= 0} to denote the minimal absolute value

of the nonzero coefficients. Without loss of generality, we may assume that the
first q components of β∗ are nonzero, thus we can write β∗ = (β∗T

1 ,0T )T , where
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0 represents a zero vector of length p − q . The oracle estimator is defined as
β̂(o) = (β̂

(o)T
1 ,0T )T , where β̂

(o)
1 is the least squares estimator fitted using only the

covariates whose indices are in A0.
To handle the high-dimensional covariates, we consider the penalized regression

in (1.1). The penalty function pλ(t) is assumed to be increasing and concave for
t ∈ [0,+∞) with a continuous derivative ṗλ(t) on (0,+∞). To induce sparsity of
the penalized estimator, it is generally necessary for the penalty function to have a
singularity at the origin, that is, ṗλ(0+) > 0. Without loss of generality, the penalty
function can be standardized such that ṗλ(0+) = λ. Furthermore, it is required that

ṗλ(t) ≤ λ ∀0 < t < a0λ,(2.2)

ṗλ(t) = 0 ∀t > a0λ(2.3)

for some positive constant a0. Condition (2.3) plays the key role of not over-
penalizing large coefficients, thus alleviating the bias problem associated with
Lasso.

The above class of penalty functions include the popularly used SCAD penalty
and MCP. The SCAD penalty is defined by

ṗλ(t) = λ

{
I (t ≤ λ) + (aλ − t)+

(a − 1)λ
I (t > λ)

}
(2.4)

for some a > 2, where the notation b+ stands for the positive part of b, that is,
b+ = bI (b > 0). Fan and Li (2001) recommended to use a = 3.7 from a Bayesian
perspective. On the other hand, the MCP is defined by ṗλ(t) = a−1(aλ − t)+ for
some a > 0 (as a ↓ 1, it amounts to hard-thresholding, thus in the following we
assume a > 1).

Let x(j) be the j th column vector of X. Without loss of generality, we as-
sume that xT

(j)x(j)/n = 1 for all j . Throughout this paper, the following nota-
tion is used. For an arbitrary index set A ⊆ {1,2, . . . , p}, XA denotes the n × |A|
submatrix of X formed by those columns of X whose indices are in A. For
a vector v = (v1, . . . , vp)′, we use ‖v‖ to denote its L2 norm; on the other hand
‖v‖0 = #{j :vj �= 0} denotes the L0 norm, ‖v‖1 = ∑

j |vj | denotes the L1 norm
and ‖v‖∞ = maxj |vj | denotes the L∞ norm. We use vA to represent the size-|A|
subvector of v formed by the entries vj with indices in A. For a symmetric ma-
trix B, λmin(B) and λmax(B) stand for the smallest and largest eigenvalues of B,
respectively. Furthermore, we let

ξmin(m) = min|B|≤m,A0⊆B
λmin

(
n−1XT

BXB

)
.(2.5)

Finally, p, q , λ and other related quantities are all allowed to depend on n, but we
suppress such dependence for notational simplicity.
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2.2. The CCCP algorithm. It is challenging to solve the penalized regression
problem in (1.1) when the penalty function is nonconvex. Kim, Choi and Oh (2008)
proposed a fast optimization algorithm called the SCAD–CCCP (CCCP stands for
ConCave Convex procedure) algorithm for solving the SCAD-penalized regres-
sion. The key idea is to update the solution with the minimizer of the tight con-
vex upper bound of the objective function obtained at the current solution. What
makes a fast algorithm practical relies on the possibility of decomposing the non-
convexed penalized least squares objective function as the sum of a convex func-
tion and a concave function. To be specific, suppose we want to minimize an ob-
jective function C(β) which has the representation C(β) = Cvex(β) + Ccav(β)

for a convex function Cvex(β) and a concave function Ccav(β). Given a cur-
rent solution β(k), the tight convex upper bound of C(β) is given by Q(β) =
Cvex(β) + ∇Ccav(β

(k))′β where ∇Ccav(β) = ∂Ccav(β)/∂β . We then update the
solution by minimizing Q(β). Since Q(β) is a convex function, it can be easily
minimized.

For the penalized regression in (1.1), we consider a penalty function pλ(|βj |)
which has the decomposition

pλ

(|βj |) = Jλ

(|βj |) + λ|βj |,(2.6)

where Jλ(|βj |) is a differentiable concave function. For example, for the SCAD
penalty,

Jλ

(|βj |) = −β2
j − 2λ|βj | + λ2

2(a − 1)
I
(
λ ≤ |βj | ≤ aλ

)
+

[
(a + 1)λ2

2
− λ|βj |

]
I
(|βj | > aλ

)
,

while for the MCP penalty,

Jλ

(|βj |) = β2
j

2a
I
(
0 ≤ |βj | < aλ

) +
[
aλ2

2
− λ|βj |

]
I
(|βj | ≥ aλ

)
.

Hence, using the decomposition in (2.6), the penalized objective function in (1.1)
can be rewritten as

1

2n
‖y − Xβ‖2 +

p∑
j=1

Jλ

(|βj |) + λ

p∑
j=1

|βj |,

which is the sum of convex and concave functions. The CCCP algorithm is applied
as follows. Given a current solution β(k), the tight convex upper bound is

Q
(
β | β(k), λ

) = 1

2n
‖y − Xβ‖2 +

p∑
j=1

∇Jλ

(∣∣β(k)
j

∣∣)βj + λ

p∑
j=1

|βj |.(2.7)

We then update the current solution by β(k+1) = arg minβ Q(β | β(k), λ).
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An important property of the CCCP algorithm is that the objective function
always decreases after each iteration [Yuille and Rangarajan (2003), and Tao and
An (1997)], from which it can be deduced that the solution converges to a local
minimum. See, for example, Corollary 3.2 of Hunter and Li (2005). However,
there is no guarantee that the local minimum found is the oracle estimator itself
because there are multiple local minima and the solution of the CCCP algorithm
depends on the choice of the initial solution.

2.3. Calibrated nonconvex penalized regression. In this paper, we propose and
study a calibrated CCCP estimator. More specifically, we start with the initial value
β(0) = 0 and a tuning parameter λ > 0 and let Q be the tight convex upper bound
defined in (2.7). The calibrated algorithm consists of the following two steps.

1. Let β̂(1)(λ) = arg minβ Q(β | β(0), τλ), where the choice of τ > 0 will be dis-
cussed later.

2. Let β̂(λ) = arg minβ Q(β | β̂(1)(λ), λ).

When we consider a sequence of tuning parameter values, we obtain a solu-
tion path {β̂(λ) :λ > 0}. The calculation of the path is fast even for very high-
dimensional p as for each of the two steps a convex minimization problem is
solved. In step 1, a smaller tuning parameter τλ is adopted to increase the esti-
mation accuracy, see Section 3.1 for discussions on the practical choice of τ . We
call a solution path “path consistent” if it contains the oracle estimator. In Sec-
tion 3.1, we will prove that the calibrated CCCP algorithm produces a consistent
solution path under rather weak conditions.

Given such a solution path, a critical question is how to tune the regularization
parameter λ in order to identify the oracle estimator. The performance of a penal-
ized regression estimator is known to heavily depend on the choice of the tuning
parameter. To further calibrate nonconvex penalized regression, we consider the
following high-dimensional BIC criterion (HBIC) to compare the estimators from
the above solution path:

HBIC(λ) = log
(
σ̂ 2

λ

) + |Mλ|Cn log(p)

n
,(2.8)

where Mλ = {j : β̂j (λ) �= 0} is the model identified by β̂(λ), |Mλ| denotes the
cardinality of Mλ, and σ̂ 2

λ = n−1SSEλ with SSEλ = ‖Y − Xβ̂(λ)‖2. As we are
interested in the case where p greatly exceeds n, the penalty term also depends
on p; and Cn is a sequence of numbers that diverges to ∞, which will be discussed
later.

We compare the value of the above HBIC criterion for λ ∈ 	n = {λ : |Mλ| ≤
Kn}, where Kn > q represents a rough estimate of an upper bound of the sparsity
of the model and is allowed to diverge to ∞. We select the tuning parameter

λ̂ = arg min
λ∈	n

HBIC(λ).



2512 L. WANG, Y. KIM AND R. LI

The above criterion extends the recent works of Chen and Chen (2008) and
Kim, Kwon and Choi (2012) on the high-dimensional BIC for the least squares
regression to tuning parameter selection for nonconvex penalized regression. In
Sections 3.1–3.3, we study asymptotic properties under conditions such as sub-
Gaussian random errors, dimension of the covariates growing at the exponential
rate and diverging Kn.

3. Theoretical properties. The main theory comprises two parts. We first
show that under some general regularity conditions the calibrated CCCP algo-
rithm yields a solution path with the “path consistency” property. We next verify
that when the proposed high-dimensional BIC is applied to this solution path to
choose the tuning parameter λ, with probability tending to one the resulted esti-
mator is the oracle estimator itself.

To facilitate the presentation, we specify a set of regularity conditions.

(A1) There exists a positive constant C1 such that λmin(n
−1XT

A0
XA0) ≥ C1.

(A2) The random errors ε1, . . . , εn are i.i.d. mean zero sub-Gaussian random
variables with a scale factor 0 < σ < ∞, that is, E[exp(tεi)] ≤ eσ 2t2/2,∀t.

(A3) The penalty function pλ(t) is assumed to be increasing and concave for
t ∈ [0,+∞) with a continuous derivative ṗλ(t) on (0,+∞). It admits a convex-
concave decomposition as in (2.6) with Jλ(·) satisfies: ∇Jλ(|t |) = −λ sign(t) for
|t | > aλ, where a > 1 is a constant; and |∇Jλ(|t |)| ≤ |t | for |t | ≤ bλ, where b ≤ a

is a positive constant.
(A4) The design matrix X satisfies: γ = minδ �=0,‖δAc

0
‖1≤3‖δA0‖1

‖Xδ‖√
n‖δA0‖ > 0.

(A5) Assume that λ = o(d∗) and τ = o(1), where d∗ is defined on page 2508,
λ and τ are the two parameters in the modified CCCP algorithm given in the first
paragraph of Section 2.3.

REMARK 1. Condition (A1) concerns the true model and is a common as-
sumption in the literature on high-dimensional regression. Condition (A2) implies
that for a vector a = (a1, . . . , an)

T ,

P
(∣∣aT ε

∣∣ > t
) ≤ 2 exp

(
− t2

2σ 2‖a‖2

)
, t ≥ 0.(3.1)

Condition (A3) is satisfied by popular nonconvex penalty functions such as SCAD
and MCP. Note that the condition ∇Jλ(|t |) = −λ sign(t) for |t | > aλ is equivalent
to assuming that ṗλ(|t |) = 0, ∀|t | > aλ, that is, large coefficients are not penalized,
which is exactly the motivation for nonconvex penalties. Condition (A4), which is
given in Bickel, Ritov and Tsybakov (2009), ensures a desirable bound on the L1
estimation loss of the Lasso estimator. Note that the CCCP algorithm yields the
Lasso estimator after the first iteration, so the asymptotic properties of the CCCP
estimator is related to that of the Lasso estimator. Condition (A4) holds under the
restricted eigenvalue condition which is known to be a relatively mild condition



NONCONVEX PENALIZED REGRESSION 2513

on the design matrix for high-dimensional estimation. In particular, it is known to
hold in some examples where the covariates are highly dependent, and is much
weaker than the irrepresentable condition [Zhao and Yu (2006)] which is almost
necessary for Lasso to be model selection consistent.

3.1. Property of the solution path. We first state a useful lemma that charac-
terizes a nonasymptotic property of the oracle estimator in high dimension. The
result is an extension of that in Kim, Choi and Oh (2008) under the more general
sub-Gaussian random error condition.

LEMMA 3.1. For any given 0 < b1 < 1 and 0 < b2 < 1, consider the events

Fn1 =
{

max
j∈A0

∣∣β̂(o)
j − β∗

j

∣∣ ≤ b1λ
}

and Fn2 =
{

max
j∈Ac

0

∣∣Sj

(
β̂(o))∣∣ ≤ b2λ

}
,

where Sj (β) = −n−1xT
(j)(y − Xβ). Then under conditions (A1) and (A2),

P(Fn1 ∩ Fn2) ≥ 1 − 2qexp
[−C1b

2
1nλ2/

(
2σ 2)] − 2(p − q) exp

[−nb2
2λ

2/
(
2σ 2)]

.

The proof of Lemma 3.1 is given in the online supplementary material [Wang,
Kim and Li (2013)].

Theorem 3.2 below provides a nonasymptotic bound of the probability the solu-
tion path contains the oracle estimator. Under general conditions, this probability
tends to one.

THEOREM 3.2. (1) Assume that conditions (A1)–(A5) hold. If τγ −2q = o(1),
then for all n sufficiently large,

P
(
β̂(λ) = β̂(o)) ≥ 1 − 8p exp

(−nτ 2λ2/
(
8σ 2))

.

(2) Assume that conditions (A1)–(A5) hold. If nτ 2λ2 → ∞, logp = o(nτ 2λ2)

and τγ −2q = o(1), then

P
(
β̂(λ) = β̂(o)) → 1

as n → ∞.

REMARK 2. Meinshausen and Yu (2009) considered thresholding Lasso,
which has the oracle property under an incoherent design condition in the ultra-
high dimension. Zhou (2010) further proposed and investigated a multi-step
thresholding procedure which can accurately estimate the sparsity pattern under
the restricted eigenvalue condition of Bickel, Ritov and Tsybakov (2009). These
theoretical results are derived by assuming the initial Lasso is obtained using a
theoretical tuning parameter value, which depends on the unknown random noise
variance σ 2. Estimating σ 2 is a difficult problem in high-dimensional setting, par-
ticularly when the random noise is non-Gaussian. On the other hand, if the true
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value of σ 2 is known a priori, then it is possible to derive variable selection consis-
tency under somewhat more relaxed conditions on the design matrix than those in
the current paper. Adaptive Lasso, originally proposed by Zou (2006) for fixed di-
mension, was extended to high dimension by Huang, Ma and Zhang (2008) under
a rather strong mutual incoherence condition. Zhou, van de Geer and Bühlmann
(2009) derived the consistency of adaptive Lasso in high dimension under similar
conditions on X, but still requires complex conditions on s and d∗. Some favor-
able empirical performance of the multi-step thresholded Lasso versus the adaptive
Lasso was reported in Zhou (2010). A theoretical comparison of these two proce-
dures in high dimension was considered by van de Geer, Bühlmann and Zhou
(2011) and Chapter 7 of Bühlmann and van de Geer (2011). For both adaptive and
thresholded Lasso, if a covariate is deleted in the first step, it will be excluded from
the final selected model. Zhang (2010a) proved that selection consistency holds for
the MCP solution at the universal penalty level σ

√
2 logp/n. The LLA algorithm,

which Zou and Li (2008) originally proposed for fixed dimensional models, allevi-
ates this problem and has the potential to be extended to the ultra-high dimension
under conditions similar as those in this paper. Needless to say, the performances
of the above procedures all depend on the choice of tuning parameter. However,
the important issue of tuning parameter selection has not been addressed.

REMARK 3. We proved that the calibrated CCCP algorithm which involves
merely two iterations is guaranteed to yield a solution path that contains the or-
acle estimator with high probability under general conditions. To provide some
intuition on this theory, we first note that the first step of the algorithm yields the
Lasso estimator, albeit with a small penalty level τλ. If we denote the first step es-
timator by β̂

(Lasso)
j (τλ), then based on the optimization theory, the oracle property

is achieved when

min
j∈A0

∣∣β̂(Lasso)
j (τλ)

∣∣ ≥ aλ > λ,

sign
(
β̂

(o)
j

) = sign
(
β∗

j

)
, j ∈ A0,

max
j /∈A0

∣∣∇Jλ

(
β̂

(Lasso)
j (τλ)

)∣∣ + n−1∥∥XT
Ac

0
(Y − X)β̂(o)

∥∥∞ ≤ λ.

The proof of Theorem 3.2 relies on the following condition:∥∥β̂(Lasso)(τλ) − β∗∥∥∞ ≤ λ/2, min
β∗

j �=0

∣∣β∗
j

∣∣ > aλ + λ/2(3.2)

for the given a > 1. The proof proceeds by bounding the first part of (3.2) us-
ing a result of Bickel, Ritov and Tsybakov (2009) via ‖β̂(Lasso)(τλ) − β‖∞ ≤
‖β̂(Lasso)(τλ) − β‖2. In Section 3.3, we considered an alternative approach using
the recent result of Zhang and Zhang (2012), which leads to weaker requirement
on the minimal signal strength under slightly stronger assumptions on the design
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matrix. We also noted that Theorem 3.2 holds for any a > 1, although in the nu-
merical studies we use the familiar a = 3.7.

How fast the probability that our estimator is equal to the oracle estimator ap-
proaches one depends on the sparsity level, the magnitude of the smallest signal,
the size of the tuning parameter and the condition of the design matrix. Corol-
lary 3.3 below confirms that the path-consistency can hold in ultra-high dimension.

COROLLARY 3.3. Assume that conditions (A1)–(A4) hold. Suppose there are
two positive constants γ0 and K such that γ ≥ γ0 > 0 and q < K . If d∗ = O(n−c1)

for some c1 ≥ 0 and p = O(exp(nc2)) for some c2 > 0, then

P
(
β̂(λ) = β̂(o)) → 1,

provided λ = O(n−c3) for some c3 > c1, τ 2n1−2c3−c2 → ∞ and τ = o(1).

The above corollary indicates that if the true model is very sparse (i.e., q < K)
and the design matrix behaves well (i.e., γ ≥ γ0 > 0), then we can take τ to be a
sequence that converges to 0 slowly, for example, τ = 1/ logn. On the other hand,
if one is concerned that the true model may not be very sparse (q → ∞) and the
design matrix may not behave very well (γ → 0), then an alternative choice is to
take τ = λ which works also quite well in practice. The following corollary estab-
lishes that under some general conditions, the choice of τ = λ yields a consistent
solution path under ultra high-dimensionality.

COROLLARY 3.4. Assume that conditions (A1)–(A4) hold. If q = O(nc1) for
some c1 ≥ 0, d∗ = O(n−c2) for some c2 ≥ 0, γ = O(n−c3) for some c3 ≥ 0, p =
O(exp(nc4)) for some 0 < c4 < 1, λ = O(n−c5) for some max(c2, c1 + 2c3) <

c5 < (1 − c4)/4 and τ = λ, then

P
(
β̂(λ) = β̂(o)) → 1.

3.2. Property of the high-dimensional BIC. Theorem 3.5 below establishes
the effectiveness of the HBIC defined in (2.8) for selecting the oracle estimator
along a solution path of the calibrated CCCP.

THEOREM 3.5 (Property of HBIC). Assume that the conditions of Theo-
rem 3.2(2) hold, and there exists a positive constant κ such that

lim
n→∞ min

A�A0,|A|≤Kn

{
n−1∥∥(In − PA)XA0β

∗
A0

∥∥2} ≥ κ,(3.3)

where In denotes the n × n identity matrix and PA denotes the projection matrix
onto the linear space spanned by the columns of XA. If Cn → ∞, qCn log(p) =
o(n) and K2

n log(p) log(n) = o(n), then

P(Mλ̂ = A0) → 1

as n,p → ∞.



2516 L. WANG, Y. KIM AND R. LI

REMARK 4. Condition (3.3) is an asymptotic model identifiability condition,
similar to that in Chen and Chen (2008). This condition states that if we consider
any model which contains at most Kn covariates, it cannot predict the response
variable as well as the true model does if it is not the true model. To give some
intuition of this condition, as in Chen and Chen (2008), one can show that for
A � A0,

n−1∥∥(In − PA)XA0β
∗
A0

∥∥2 ≥ λmin
(
n−1XT

A0∪AXA0∪A

)∥∥β∗
A0∩Ac

∥∥2

≥ λmin
(
n−1XT

A0∪AXA0∪A

)
min
βj �=0

β∗2
j .

The theorem confirms that the BIC criterion for shrinkage parameter selection in-
vestigated in Wang, Li and Tsai (2007), Wang, Li and Leng (2009) and Zhang, Li
and Tsai (2010) can be modified and extended to ultra-high dimensionality. Care-
fully examining the proof, it is worth noting that the consistency of the HBIC only
requires a consistent solution path but does not rely on the particular method used
to construct the path. Hence, the proposed HBIC has the potential to be gener-
alized to other settings with ultra-high dimensionality. The sequence Cn should
diverge to ∞ slowly, for example, Cn = log(logn), which is used in our numerical
studies.

3.3. Relaxing the conditions on the minimal signal. Theorem 3.2, which is the
main result of the paper, implies that the oracle property of the calibrated CCCP
estimator requires the following lower bound on the magnitude of the smallest
nonzero regression coefficient:

d∗ � λ � cq
√

logp/n,(3.4)

where a � b means limn→∞ a/b = ∞, and c is a constant that depends on the
design matrix X and other unknown factors such as σ 2. When the true model di-
mension q is fixed, the lower bound for d∗ is arbitrarily close to the optimal lower
bound c

√
logp/n for nonconvex penalized approaches [e.g., Zhang (2010a)].

However, when q is diverging, this bound is suboptimal. In general, there is a
tradeoff between the conditions on d∗ and the conditions on the design matrix.
Comparing to the results in the literature, Theorem 3.2 imposes weak conditions
on the design matrix and the algorithm we investigate is transparent. In this section,
we will prove that the optimal lower bound of d∗ can be achieved by the calibrated
CCCP procedure under a set of slightly stronger conditions on the design matrix.

Note that the calibrated CCCP estimator depends on β̂(1), which is the
Lasso estimator obtained after the first iteration of the CCCP algorithm. In
fact, the lower bound of d∗ is proportional to the l∞ convergence rate of β̂(1)

to β∗, and condition (A4) only implies that maxj |β̂(1)
j − β∗

j | is proportional to
Op(q

√
logp/n/τ). If

max
j

∣∣β̂(1)
j − β∗

j

∣∣ = Op(
√

logp/n/τ),(3.5)
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we can show that d∗ � c
√

logp/n/τ for any τ = o(1), and hence we can achieve
almost the optimal lower bound for d∗. Now, the question is under what conditions
inequality (3.5) holds. Let vij be the (i, j) entry of XT X. Lounici (2008) derived
the convergence rate (3.5) under the condition of mutual coherence:

max
i �=j

|vij | > b/q(3.6)

for some constant b > 0. However, the mutual coherence condition would be too
strong for practical purposes when q is diverging, since it requires that the pairwise
correlations between all possible pairs are sufficiently small. In this subsection, we
give an alternative condition for (3.5) based on the l1 operation norm of XT X.

We replace condition (A4) with the slightly stronger condition (A4′) below.
We also introduce an additional condition (A6) based on the matrix l1 operational
norm. For a given m × m matrix A, the l1 operational norm ‖A‖1 is defined by
‖A‖1 = maxi=1,...,m

∑m
j=1 |aij |, where aij is the (i, j)th entry of A. Let

ζmax(m) = max|B|≤m,A0⊂B

∥∥n−1XT
BXB

∥∥
1,

ζmin(m) = max|B|≤m,A0⊂B

∥∥(
n−1XT

BXB

)−1∥∥
1.

Condition (A4′): There exist positive constants α and κmin such that

ξmin
(
(α + 1)q

) ≥ κmin(3.7)

and

ξmax(αq)

α
≤ 1

576
κmin

(
1 − 3

√
ξmax(αq)

ακmin

)2

,(3.8)

where ξmax(m) = max|B|≤m,A0⊂B λmax(n
−1XT

BXB).
Condition (A6): Let u = α + 1. There exist finite positive constants ηmax and

ηmin such that

lim sup
n→∞

ζmax(uq) ≤ ηmax < ∞
and

lim sup
n→∞

ζmin(uq) ≤ ηmin < ∞.

REMARK 5. Similar conditions to condition (A4′) were considered by
Meinshausen and Yu (2009) and Bickel, Ritov and Tsybakov (2009) for the l2
convergence of the Lasso estimator. However, (3.8) of condition (A4′), which es-
sentially assumes that ξmax(αq)/α is sufficiently small, is weaker, at least asymp-
totically, than the corresponding condition in Meinshausen and Yu (2009) and
Bickel, Ritov and Tsybakov (2009), which assumes that ξmax(q + min{n,p}) is
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bounded. Zhang and Zhang (2012) proved that |{j : β̂j �= 0}∪A0| ≤ (α+1)q under
condition (A4′). In addition, condition (A4′) implies condition (A4) [see Bickel,
Ritov and Tsybakov (2009)]. Condition (A6) is not too restrictive. Assume the xi ’s
are randomly sampled from a distribution with mean 0 and covariance matrix �.
If the l1 operational norm of � and �−1 are bounded, then we have ζmax(uq) ≤
max|B|≤uq,A0⊂B ‖�B‖1 + op(1) and ζmin(uq) ≤ max|B|≤uq,A0⊂B ‖�−1

B ‖1 + op(1)

provided that q does not diverge too fast. Here �B is the |B| × |B| subma-
trix whose entries consist of σjl , the (j, l)th entry of �, for j ∈ B and l ∈ B .
See Proposition A.1 in the online supplementary material [Wang, Kim and Li
(2013)] of this paper. An example of � satisfying max|B|≤uq,A0⊂B ‖�B‖1 < ∞
and max|B|≤uq,A0⊂B ‖�−1

B ‖1 < ∞ is a block diagonal matrix where each block is
well posed and of finite dimension. Moreover, condition (A6) is almost necessary
for the l∞ convergence of the Lasso estimator. Suppose that p is small and d∗ is
large so that all coefficients of the Lasso coefficients are nonzero. Then,

β̂(1) = β̂ ls + τλ
(
XT X/n

)−1
δ,

where β̂ ls is the least square estimator, and δ = (δ1, . . . , δp) with δj = sign(β̂ls
j ).

Hence, for the sup norm between β̂(1) − β̂ ls to be the order of τλ, the l1 operational
norm of (XT X/n)−1 should be bounded.

THEOREM 3.6. Assume that conditions (A1)–(A3), (A4′), (A5) and (A6)
hold.

(1) If τ = o(1), then for all n sufficiently large,

P
(
β̂(λ) = β̂(o)) ≥ 1 − 8p exp

[−nτ 2λ2/
(
8σ 2)]

.

(2) If τ = o(1) and logp = o(nτ 2λ2), then

P
(
β̂(λ) = β̂(o)) → 1

as n → ∞.
(3) Assume that the conditions of (2) and (3.3) hold. Let λ̂ be the tuning param-

eter selected by HBIC. If Cn → ∞, qCn log(p) = o(n), K2
n log(p) log(n) = o(n),

then P(Mλ̂ = A0) → 1, as n,p → ∞.

REMARK 6. We only need τ = o(1) in Theorem 3.6 for the probability bound
of the calibrated CCCP estimator, while Theorem 3.2 requires τγ −2q = o(1). Un-
der the conditions of Theorem 3.6, the oracle property of β̂(λ) holds when

d∗ � λ � 1

τ

√
logp/n.(3.9)

Since τ can converge to 0 arbitrarily slowly (e.g., τ = 1/ logn), the lower bound
of d∗ given by (3.9),

√
logp/n/τ , is almost optimal.
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4. Numerical results.

4.1. Monte Carlo studies. We now investigate the sparsity recovery and es-
timation properties of the proposed estimator via numerical simulations. We
compare the following estimators: the oracle estimator which assumes the avail-
ability of the knowledge of the true underlying model; the Lasso estimator (im-
plemented using the R package glmnet); the adaptive Lasso estimator [denoted
by ALasso, Zou (2006), Section 2.8 of Bühlmann and van de Geer (2011)], the
hard-thresholded Lasso estimator [denoted by HLasso, Section 2.8, Bühlmann and
van de Geer (2011)], the SCAD estimator from the original CCCP algorithm with-
out calibration (denoted by SCAD); the MCP estimator with a = 1.5 and 3. For
Lasso and SCAD, 5-fold cross-validation is used to select the tuning parameter;
for ALasso, sequential tuning as described in Chapter 2 of Bühlmann and van de
Geer (2011) is applied. For HLasso, following a referee’s suggestion, we first used
λ as the tuning parameter to obtain the initial Lasso estimator, then thresholded the
Lasso estimator using thresholding parameter η = cλ for some c > 0 and refitted
least squares regression. We denote the solution path of HLasso by β̂HL(λ, cλ),
and apply HBIC to select λ. We consider c = 2 and set Cn = log logn in the HBIC
as it is found they lead to overall good performance for HLasso. The MCP esti-
mator is computed using the R package PLUS with the theoretical optimal tuning
parameter value λ = σ

√
(2/n) logp, where the standard deviation σ is taken to be

known. For the proposed calibrated CCCP estimator (denoted by New), we take
τ = 1/ logn and set Cn = log logn in the HBIC. We observe that the new estimator
performs similarly if we take τ = λ. In the following, we report simulation results
from two examples. Results of additional simulations can be found in the online
supplemental file.

EXAMPLE 1. We generate a random sample {yi,xi}, i = 1, . . . ,100 from the
following linear regression model:

yi = xT
i β∗ + εi,

where β∗ = (3,1.5,0,0,2,0T
p−5)

T with 0k denoting a k-dimensional vector of
zeros, the p-dimensional vector xi has the N(0p,�) distribution with covariance
matrix �, εi is independent of xi and has a normal distribution with mean zero
and standard deviation σ = 2. This simulation setup was considered in Fan and Li
(2001) for a small p case. In this example, we consider p = 3000 and the following
choices of �: (1) Case 1a: the (i, j)th entry of � is equal to 0.5|i−j |, 1 ≤ i, j ≤ p;
(2) Case 1b: the (i, j)th entry of � is equal to 0.8|i−j |, 1 ≤ i, j ≤ p; (3) Case 1c:
the (i, j)th entry of � equal to 1 if i = j and 0.5 if 1 ≤ i �= j ≤ p.

EXAMPLE 2. We consider a more challenging case by modifying Example 1
case 1a. We divide the p components of β∗ into continuous blocks of size 20. We
randomly select 10 blocks and assign each block the value (3,1.5,0,0,2,0T

15)/1.5.
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Hence, the number of nonzero coefficients is 30. The entries in other blocks are set
to be zero. We consider σ = 1. Two different cases are investigated: (1) Case 2a:
n = 200 and p = 3000; (2) Case 2b: n = 300 and p = 4000.

In the two examples, based on 100 simulation runs we report the average num-
ber of nonzero coefficients correctly estimated to be nonzero (i.e., true positive,
denoted by TP) and average number of zero coefficients incorrectly estimated to
be nonzero (i.e., false positive, denoted by FP) and the proportion of times the
true model is exactly identified (denoted by TM). These three quantities describe
the ability of various estimators for sparsity recovery. To measure the estima-
tion accuracy, we report the mean squared error (MSE), which is defined to be
100−1 ∑100

m=1 ‖β̂(m) − β∗‖2, where β̂(m) is the estimator from the mth simulation
run.

The results are summarized in Tables 1 and 2. It is not surprising that Lasso al-
ways overfits. Other procedures improve the performance of Lasso by reducing the

TABLE 1
Example 1. We report TP (the average number of nonzero coefficients correctly estimated to be
nonzero, i.e., true positive), FP (average number of zero coefficients incorrectly estimated to be

nonzero, i.e., false positive), TM (the proportion of the true model being exactly identified) and MSE

Case Method TP FP TM MSE

1a Oracle 3.00 0.00 1.00 0.146
Lasso 3.00 28.99 0.00 1.101

ALasso 3.00 11.47 0.01 1.327
HLasso 3.00 0.49 0.79 0.383
SCAD 3.00 10.12 0.08 1.496

MCP (a = 1.5) 2.89 0.28 0.76 0.561
MCP (a = 3) 2.91 0.42 0.68 1.292

New 2.99 0.09 0.91 0.222

1b Oracle 3.00 0.00 1.00 0.314
Lasso 3.00 20.64 0.00 1.248

ALasso 3.00 8.84 0.02 1.527
HLasso 2.79 0.50 0.56 1.244
SCAD 2.99 7.42 0.17 1.598

MCP (a = 1.5) 2.02 0.51 0.06 5.118
MCP (a = 3) 1.99 0.60 0.02 5.437

New 2.77 0.21 0.66 1.150

1c Oracle 3.00 0.00 1.00 0.195
Lasso 2.99 28.22 0.00 2.987

ALasso 2.96 10.09 0.02 2.433
HLasso 2.84 0.77 0.56 1.361
SCAD 2.96 18.09 0.01 3.428

MCP (a = 1.5) 2.67 0.17 0.72 1.636
MCP (a = 3) 2.77 0.22 0.68 1.677

New 2.79 0.46 0.58 1.244
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TABLE 2
Example 2. Captions are the same as those in Table 1

Case Method TP FP TM MSE

2a Oracle 30.00 0.00 1.00 0.223
Lasso 30.00 143.14 0.00 3.365

ALasso 29.98 7.50 0.00 0.393
HLasso 29.97 1.09 0.74 0.312
SCAD 29.98 46.15 0.00 2.495

MCP (a = 3) 29.83 0.50 0.92 0.807
New 29.99 0.20 0.89 0.247

2b Oracle 30.00 0.00 1.00 0.137
Lasso 30.00 133.65 0.00 1.089

ALasso 30.00 1.32 0.29 0.165
HLasso 30.00 0.00 1.00 0.137
SCAD 30.00 21.83 0.00 0.599

MCP (a = 3) 30.00 0.08 0.92 0.137
New 30.00 0.00 0.99 0.135

false positive rate. The SCAD estimator from the original CCCP algorithm without
calibration has no guarantee to find a good local minimum and has low probability
of identifying the true model. The best overall performance is achieved by the cal-
ibrated new estimator: the probability of identifying the true model is high and the
MSE is relatively small. The HLasso (with thresholding parameter selected by our
proposed HBIC) and MCP (using PLUS algorithm and the theoretically optimal
tuning parameter) also have overall fine performance. We do not report the results
of the MCP with a = 1.5 for Example 2 since the PLUS algorithm sometimes runs
into convergence problems.

4.2. Real data analysis. To demonstrate the application, we analyze the gene
expression data set of Scheetz et al. (2006), which contains expression values
of 31,042 probe sets on 120 twelve-week-old male offspring of rats. We are inter-
ested in identifying genes whose expressions are related to that of gene TRIM32
(known to be associated with human diseases of the retina) corresponding to probe
1389163_at. We first preprocess the data as described in Huang, Ma and Zhang
(2008) to exclude genes that are either not expressed or lacking sufficient varia-
tion. This leaves 18,957 genes.

For the analysis, we select 3000 genes that display the largest variance in ex-
pression level. We further analyze the top p (p = 1000 and 2000) genes that have
the largest absolute value of marginal correlation with gene TRIM32. We ran-
domly partition the 120 rats into the training data set (80 rates) and testing data
set (40 rats). We use the training data set to fit the model and select the tuning
parameter; and use the testing data set to evaluate the prediction performance. We
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TABLE 3
Gene expression data analysis. The results are based on 100 random

partitions of the original data set

p Method ave model size Prediction error

1000 Lasso 31.17 0.586
ALasso 11.76 0.646
HLasso 12.04 0.676
SCAD 4.81 0.827

MCP (a = 1.5) 11.79 0.668
MCP (a = 3) 7.02 0.768

New 8.50 0.689

2000 Lasso 32.01 0.604
ALasso 11.01 0.661
HLasso 10.82 0.689
SCAD 4.57 0.850

MCP (a = 1.5) 11.33 0.700
MCP (a = 3) 6.78 0.788

New 7.91 0.736

perform 1000 random partitions and report in Table 3 the average model sizes and
the average prediction error on the testing data set for p = 1000 and 2000. For the
MCP estimators, the tuning parameters are selected by cross-validation since the
standard deviation of the random error is not known. We observe that the Lasso
procedure yields the smallest prediction error. However, this is achieved by fit-
ting substantially more complex models. The calibrated CCCP algorithm as well
as ALasso and HLasso result in much sparser models with still small prediction
errors. The performance of the MCP procedure is satisfactory but its optimal per-
formance depends on the parameter a. In screening or diagnostic applications, it
is often important to develop an accurate diagnostic test using as few features as
possible in order to control the cost. The same consideration also matters when
selecting target genes in gene therapies.

We also applied the calibrated CCCP procedure directly to the 18,957 genes
and evaluated the predicative performance based on 100 random partitions. The
calibrated CCCP estimator has an average model size 8.1 and an average prediction
error 0.58. Note that the model size and predictive performance are similar to what
we obtain when we first select 1000 (or 2000) genes with the largest variance
and marginal correlation. This demonstrates the stability of the calibrated CCCP
estimator in ultra-high dimension.

When a probe is simultaneously identified by different variable selection proce-
dures, we consider it as evidence for the strength of the signal. Probe 1368113_at
is identified by both Lasso and the calibrated CCCP estimator. This probe corre-
sponds to gene tff2, which was found to up-regulate cell proliferation in developing
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mice retina [Paunel-Görgülü et al. (2011)]. On the other hand, the probes identi-
fied by the calibrated CCCP but not by Lasso also merit further investigation. For
instance, probe 1371168_at was identified by the calibrated CCCP estimator but
not by Lasso. This probe corresponds to gene mpp2, which was found to be related
to protein metabolism abnormalities in the development of retinopathy in diabetic
mice [Gao et al. (2009)].

4.3. Extension to penalized logistic regression. Regularized logistic regres-
sion is known to automatically result in a sparse set of features for classification in
ultra-high dimension [van de Geer (2008), Kwon and Kim (2012)]. We consider
the representative two-class classification problem, where the response variable yi

takes two possible values 0 or 1, indicating the class membership. It is assumed
that

P(yi = 1 | xi ) = exp
(
xT
i β

)
/
{
1 + exp

(
xT
i β

)}
.(4.1)

The penalized logistic regression estimator minimizes

n−1
n∑

i=1

[−(
xT
i β

)
yi + log

{
1 + exp

(
xT
i β

)}] +
p∑

j=1

pλ

(|βj |).
When a nonconvex penalty is adopted, it is easy to see that the CCCP algorithm can
be extended to this case without difficulty as the penalized log-likelihood naturally
possesses the convex-concave decomposition discussed in Section 2.2 of the main
paper, because of the convexity of the negative log-likelihood for the exponential
family. For easy implementation, the CCCP algorithm can be combined with the
iteratively reweighted least squares algorithm for ordinary logistic regression, thus
taking advantage of the CCCP algorithm for linear regression. Denote the noncon-
vex penalized logistic regression estimator by β̂ , then for a new feature vector x,
the predicted class membership is I (exp(xT β̂)/(1 + exp(xT β̂)) > 0.5).

We demonstrate the performance of nonconvex penalized logistic regression
for classification through the following example: we generate xi as in Example 1
of the main paper, and the response variable yi is generated according to (4.1)
with β∗ = (3,1.5,0,0,2,0T

p−50)
T . We consider sample size n = 300 and feature

dimension p = 2000. Furthermore, an independent test set of size 1000 is used to
evaluate the misclassificaiton error. The simulation results are reported in Table 4.
The results demonstrate that the calibrated CCCP estimator is effective in both
accurate classification and identifying the relevant features.

We expect that the theory we derived for the linear regression case continues to
hold for the logistic regression under similar conditions due to the convexity of the
negative log-likelihood function and the fact that the Bernoulli random variables
automatically satisfies the sub-Gaussian tail assumption. The latter is essential for
obtaining the exponential bounds in deriving the theory.
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TABLE 4
Simulations for classification in high dimension (n = 300, p = 2000)

Method TP FP TM Misclassification rate

Oracle 3.00 0.00 1.00 0.116
Lasso 3.00 46.48 0.00 0.134
SCAD 2.08 4.02 0.04 0.161
ALASSO 2.02 4.58 0.00 0.188
HLASSO 2.87 0.00 0.87 0.120
MCP (a = 3) 2.96 0.56 0.54 0.128
New 2.99 0.00 0.99 0.116

5. Revisiting local minima of nonconvex penalized regression. In the fol-
lowing, we shall revisit the issue of multiple local minima of nonconvex penalized
regression. We derive an L2 bound of the distance between a sparse local mini-
mum and the oracle estimator. The result indicates that a local minimum which is
sufficiently sparse often enjoys fairly accurate estimation even when it is not the
oracle estimator. This result, to our knowledge, is new in the literature on high-
dimensional nonconvex penalized regression.

Our theory applies the necessary condition for the local minimizer as in Tao and
An (1997) for convex differencing problems. Let

Qn(β) = (2n)−1‖y − Xβ‖2 + λ

p∑
j=1

pλ

(|βj |)
and

∇(β) = {
ξ ∈ Rp : ξj = −n−1xT

(j)(y − Xβ) + λlj
}
,

where lj = sign(βj ) if βj �= 0 and lj ∈ [−1,1] otherwise, 1 ≤ j ≤ p. As Qn(β)

can be expressed as the difference of two convex functions, a necessary condition
for β to be a local minimizer of Qn(β) is

∂hn(β)

∂β
∈ ∇(β),(5.1)

where hn(β) = ∑p
j=1 Jλ(|βj |), where Jλ(|βj |) is defined in Section 2.2 for SCAD

and MCP penalty functions.
To facilitate our study, we introduce below a new concept.

DEFINITION 5.1. The relaxed sparse Riesz condition (SRC) in an L0-neigh-
borhood of the true model is satisfied for a positive integer m (2q ≤ m ≤ n) if

ξmin(m) ≥ c∗ for some 0 < c∗ < ∞,

where ξmin is defined in (2.5).
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REMARK 7. The relaxed SRC condition is related to, but generally weaker
than the sparse Reisz condition [Zhang and Huang (2008), Zhang (2010a)], the re-
stricted eigenvalue condition of Bickel, Ritov and Tsybakov (2009) and the partial
orthogonality condition of Huang, Ma and Zhang (2008).

The theorem below unveils that for a given sparse estimator which is a local
minimum of (1.1), its L2 distance to the oracle estimator β̂(o) has an upper bound,
which is determined by three key factors: tuning parameter λ, the sparsity size of
the local solution, and the magnitude of the smallest sparse eigenvalue as charac-
terized by the relaxed SRC condition. To this end, we consider any local minimum
β̂ = (β̂j , . . . , β̂j )

T corresponding to the tuning parameter λ. Assume that the spar-
sity size of this local solution satisfies: ‖β̂‖0 ≤ qun for some un > 0.

THEOREM 5.2 (Properties of the local minima of nonconvex penalized re-
gression). Consider SCAD or MCP penalized least squares regression. Assume
that conditions (A1) and (A2) hold, and that the relaxed SRC condition in an
L0-neighborhood of the true model is satisfied for m = qu∗

n where u∗
n = un + 1.

Then if λ = o(d∗), then for all n sufficiently large,

P
{∥∥β̂(λ) − β̂(o)

∥∥ ≤ 2λ
√

qu∗
nξ

−1
min

(
qu∗

n

)}
≥ 1 − 2q exp

[−C1n(d∗ − aλ)2/
(
2σ 2)]

(5.2)

− 2(p − q) exp
[−nλ2/

(
2σ 2)]

,

where ξmin(m) is defined in (2.5) and the positive constant C1 is defined in (A1).

COROLLARY 5.3. Under the conditions of Theorem 5.2, if we take λ =√
3 log(p)/n, then we have

P

{∥∥β̂(λ) − β̂(o)
∥∥2 ≤ 12

qu∗
n log(p)

nξ2
min(qu∗

n)

}
≥ 1 − 2q exp

[−C1n(d∗ − aλ)2/
(
2σ 2)] − 2(p − q) exp

[−nλ2/
(
2σ 2)]

.

The simple form in the above corollary suggests that if a local minimum is suf-
ficiently sparse, in the sense that un diverge to ∞ very slowly, this bound is never-
theless quite tight as the rate q log(p)/n is near-oracle. The factor unξ

−2
min(qu∗

n) is
expected to go to infinity at a relatively slow rate if the local solution is sufficiently
sparse. Our experience with existing algorithms for solving nonconvex penalized
regression is that they often yield a sparse local minimum, which however has a
low probability to be the oracle estimator itself.

6. Proofs. We will provide here proofs for the main theoretical results in this
paper.
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PROOF OF THEOREM 3.2. By definition, β̂(λ) = arg minβ Qλ(β | β̂(1)),

where Qλ(β | β̂(1)) = (2n)−1‖y − Xβ‖2 + ∑p
j=1 ∇Jλ(|β̂(1)

j |)βj + λ
∑p

j=1 |βj |.
Since Qλ(β | β̂(1)) is a convex function of β , the KKT condition is necessary and
sufficient for characterizing the minimum. To verify that β̂(o) is the minimizer of
Qλ(β | β̂(1)), it is sufficient to show that

n−1xT
(j)

(
y − Xβ̂(o)) + ∇Jλ

(∣∣β̂(1)
j

∣∣) + λ sign
(
β̂

(o)
j

) = 0, j ∈ A0(6.1)

and ∣∣n−1xT
(j)

(
y − Xβ̂(o)) + ∇Jλ

(∣∣β̂(1)
j

∣∣)∣∣ ≤ λ, j /∈ A0.(6.2)

We first verify (6.1). Note that with the initial value 0, we have β̂(1) =
arg minβ{(2n)−1‖y − Xβ‖2 + τλ‖β‖1}. Let Fn3 = {‖β̂(1) − β∗‖1 ≤ 16τλγ −2q},
where ‖ · ‖1 denotes the L1 norm. By modifying the proof of Theorem 7.2 of
Bickel, Ritov and Tsybakov (2009), we can show that under the conditions of the
theorem,

P(Fn3) ≥ 1 − 2p exp
(−nτ 2λ2/

(
8σ 2))

.(6.3)

By the assumption of the theorem, on the event Fn3, ‖β̂(1) − β∗‖1 ≤ λ/2
for all n sufficiently large. Furthermore, we consider the event Fn1 defined
in Lemma 3.1 with b1 = 1/2. By Lemma 3.1, we have P(‖β̂(o) − β∗‖∞ ≤
λ/2) ≥ 1 − 2q exp[−C1nλ2/(8σ 2)]. By the assumption λ = o(d∗), for all n suf-
ficiently large, on the event Fn1 ∩ Fn3, we have sign(β̂

(1)
j ) = sign(β̂

(o)
j ), for

j ∈ A0 and minj∈A0 |β̂(1)
j | > aλ. Hence, by condition (A3), on the event Fn1 ∩

Fn3, ∇Jλ(|β̂(1)
j |) = −λ sign(β̂

(1)
j ) = −λ sign(β̂

(o)
j ). Furthermore, n−1xT

(j)(y −
Xβ̂(o)) = 0, for j ∈ A0, following the definition of the oracle estimator. Therefore,
(6.1) holds with probability at least 1−2q exp[−C1nλ2/(8σ 2)]−2p exp(−nτ 2λ2/

(8σ 2)).
Next, we verify (6.2). On the event Fn3, we have maxj /∈A0 |β̂(1)

j | ≤ λ/2, for
all n sufficiently large. We consider the event Fn2 defined in Lemma 3.1 with
b2 = 1/2. Lemma 3.1 implies that P(Fn2) ≥ 1 − 2(p − q) exp[−nλ2/(8σ 2)]. On
the event Fn2 we have maxj∈Ac

0
|n−1xT

(j)(y − Xβ̂(o))| ≤ λ/2. By condition (A3),
on the event Fn2 ∩ Fn3, (6.2) holds, and this occurs with probability at least 1 −
2(p − q) exp[−nλ2/(8σ 2)] − 2p exp(−nτ 2λ2/(8σ 2)).

The above two steps proves (1). The result in (2) follows immediately from (1).
�

PROOF OF COROLLARIES 3.3 AND 3.4. The proof follows immediately from
Theorem 3.2. �

PROOF OF THEOREM 3.5. Recall that Mλ = {j : β̂j (λ) �= 0}. We define the
following three index sets: 	n− = {λ > 0 :λ ∈ 	n,A0 �⊂ Mλ}, 	n0 = {λ > 0 :λ ∈
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	n,A0 = Mλ}, and 	n+ = {λ > 0 :λ ∈ 	n,A0 ⊂ Mλ and A0 �= Mλ}. In other
words, 	n−, 	n0 and 	n+ denote the sets of λ values which lead to underfitted, ex-
actly fitted and overfitted models, respectively. For a given model (or equivalently
an index set) M , let SSEM = infβM∈R|M| ‖y − XMβM‖2. That is, SSEM is the sum
of squared residuals when the least squares method is used to estimate model M .
Also, let σ̂ 2

M = n−1SSEM . From the definition, we always have σ̂ 2
λ ≥ σ̂ 2

Mλ
.

Consider λn satisfying the conditions of Theorem 3.2(2). We have P(Mλn =
A0) → 1. We will prove that P(infλ∈	n−[HBIC(λ) − HBIC(λn)] > 0) → 1 and
P(infλ∈	n+[HBIC(λ) − HBIC(λn)] > 0) → 1.

Case I. Consider an arbitrary λ ∈ 	n−, that is, the model corresponding to Mλ

is underfitted:

P
(

inf
λ∈	n−

[
HBIC(λ) − HBIC(λn)

]
> 0

)
= P

(
inf

λ∈	n−

[
HBIC(λ) − HBIC(λn)

]
> 0,Mλn = A0

)
+ P

(
inf

λ∈	n−

[
HBIC(λ) − HBIC(λn)

]
> 0,Mλn �= A0

)
≥ P

(
inf

λ∈	n−

[
log

(
σ̂ 2

Mλ
/σ̂ 2

A0

) + (|Mλ| − q
)Cn log(p)

n

]
> 0

)
+ o(1),

where the inequality uses Theorem 3.2(2). Furthermore, we observe that

log
(

σ̂ 2
Mλ

σ̂ 2
A0

)
= log

(
1 + n[σ̂ 2

Mλ
− σ̂ 2

A0
]

εT (In − PA0)ε

)
.

Applying the inequality log(1 + x) ≥ min{0.5x, log(2)}, ∀x > 0, we have

P
(

inf
λ∈	n−

[
HBIC(λ) − HBIC(λn)

]
> 0

)

≥ P

(
min

{
inf

λ∈	n−

n(σ̂ 2
Mλ

− σ̂ 2
A0

)

2εT (In − PA0)ε
, log(2)

}
− qCn log(p)

n
> 0

)
+ o(1).

To evaluate εT (In − PA0)ε, we apply Corollary 1.3 of Mikosch (1990) with
their An = In − PA0 , Bn = 2σ 4(n − q), μn = σ 2 and yn = (n − q)/(logn), we
have P(εT (In − PA0)ε ≤ 2σ 2(n − q)) → 1 as n → ∞. Thus

P
(

inf
λ∈	n−

[
HBIC(λ) − HBIC(λn)

]
> 0

)

≥ P

(
min

{ infλ∈	n− n(σ̂ 2
Mλ

− σ̂ 2
A0

)

4(n − q)σ 2 , log(2)

}
− qCn log(p)

n
> 0

)
+ o(1).

In what follows, we will prove that qCn log(p) = o(infλ∈	n− n(σ̂ 2
Mλ

− σ̂ 2
A0

)),
which combining with the assumption qCn log(p) = o(n) leads to the conclusion
P(infλ∈	n−[HBIC(λ) − HBIC(λn)] > 0) → 1.
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We have

n
(
σ̂ 2

Mλ
− σ̂ 2

MT

)
= μT (In − PMλ)μ + 2μT (In − PMλ)ε − εT PMλε + εT PA0ε

= I1 + I2 − I3 + I4,

where μ = Xβ∗, PMλ is the projection matrix into the space spanned by the
columns of XMλ , and the definition of Ii , i = 1,2,3,4, should be clear from the
context. Let M− = {j : j /∈ Mλ, j ∈ MT }. Note that M− is nonempty since Mλ

underfits.
By assumption (3.3), |I1| ≥ κn, for all n sufficiently large. To evaluate I2, we

have

I2 = 2
√

μT (In − PMλ)μZ(Mλ) = 2
√

I1Z(Mλ),

where Z(Mλ) = aT
n ε with aT

n = (μT (In − PMλ)μ)−1/2μT (In − PMλ). Note that

‖an‖2 = 1 and |	−| ≤ ∑Kn

t=0

(p
t

) ≤ ∑Kn

t=0 pt = pKn+1−1
p−1 ≤ 2pKn . Applying the sub-

Gaussian tail property in (3.1), we have

P
(

sup
η∈	n−

∣∣Z(Mλ)
∣∣ >

√
n/ log(n)

)
≤ 4pKn exp

(−n/
(
2σ 2 log(n)

))
= 4 exp

(
Kn log(p) − n/

(
2σ 2 log(n)

)) → 0

as Kn log(p) log(n) = o(n). Hence, supη∈	n− |I2| = o(I1). To evaluate I3, let
r(λ) = Trace(PMλ). It follows from Proposition 3 of Zhang (2010a) that for the
sub-Gaussian random variables εi , ∀t > 0,

P

{
εT PMλε

r(λ)σ 2 ≥ 1 + t

[1 − 2/(et/2
√

1 + t − 1)]2+

}
(6.4)

≤ exp
(
−r(λ)t

2

)
(1 + t)(r(λ))/2.

We take t = n/(2σ 2Kn log(n)) − 1 in the above inequality. Then t → ∞ by the
assumptions of the theorem. Thus for all n sufficiently large,

P

(
sup

λ∈	n−

∣∣εT PMλε
∣∣ >

n

log(n)

)

≤ P

(
sup

λ∈	n−

∣∣∣∣εT PMλε

r(λ)σ 2

∣∣∣∣ >
n

σ 2Kn log(n)

)

≤ P

(
sup

λ∈	n−

∣∣∣∣εT PMλε

r(λ)σ 2

∣∣∣∣ >
1 + t

[1 − 2/(et/2
√

1 + t − 1)]2+

)
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≤ 2pKn exp
(−n/

(
8σ 2Kn log(n)

))(
n/

(
2σ 2Kn log(n)

))Kn/2

≤ 2 exp
(
Kn log(p) − n/

(
8σ 2Kn log(n)

) + Kn log
(
n/

(
2σ 2Kn log(n)

)))
→ 0,

since K2
n log(p) log(n) = o(n). Finally, εT PA0ε does not depend on λ. Similarly

as above, P(supλ∈	n− |I4| ≥ n/ log(n)) → 0 by the sub-Gaussian tail condition.
Therefore, with probability approaching one, n(σ̂ 2

Mλ
− σ̂ 2

A0
) is dominated by I1.

This finishes the proof for the first case as qCn log(p) = o(n).
Case II. Consider an arbitrary λ ∈ 	n+, that is, the model corresponding to Mλ

is overfitted. In this case, we have yT (In − PMλ)y = εT (In − PMλ)ε. Therefore,
n(σ̂ 2

A0
− σ̂ 2

Mλ
) = εT (PMλ − PA0)ε. Let ε̂ = (In − PA0)ε, then

log
(

σ̂ 2
A0

σ̂ 2
Mλ

)
= log

(
1 + εT (PMλ − PA0)ε

εT (In − PMλ)ε

)
≤ εT (PMλ − PA0)ε

ε̂T ε̂ − εT (PMλ − PA0)ε

by the fact log(1 + x) ≤ x, ∀x ≥ 0.
Similarly as in case I,

P
(

inf
λ∈	n+

[
HBIC(λ) − HBIC(λn)

]
> 0

)

= P

(
inf

λ∈	n+

[
− log

(
σ̂ 2

A0

σ̂ 2
Mλ

)
+ (|Mλ| − q

)Cn log(p)

n

]
> 0

)
+ o(1)

≥ P

(
inf

λ∈	n+

[(|Mλ| − q
)Cn log(p)

n
− εT (PMλ − PA0)ε

ε̂T ε̂ − εT (PMλ − PA0)ε

]
> 0

)
+ o(1)

= P

(
inf

λ∈	n+

{(|Mλ| − q
)[Cn log(p)

n
− εT (PMλ − PA0)ε/(|Mλ| − q)

ε̂T ε̂ − εT (PMλ − PA0)ε

]})
+ o(1).

It suffices to show that

P

(
inf

λ∈	n+

[
Cn log(p)

n
− εT (PMλ − PA0)ε/(|Mλ| − q)

ε̂T ε̂ − εT (PMλ − PA0)ε

]
> 0

)
→ 1,

which is implied by

P

(
Cn log(p)

n
− supλ∈	n+ εT (PMλ − PA0)ε/(|Mλ| − q)

ε̂T ε̂ − supλ∈	n+ εT (PMλ − PA0)ε
> 0

)
→ 1.

Note that E(̂εT ε̂) = Var(εi)Trace(In − PA0) ≤ (n − q)σ 2, hence ε̂T ε̂ = Op(n).
Similarly as in case I, we can show that P(supλ∈	n+ εT (PMλ − PA0)ε > n/

log(n)) → 0, since K2
n log(p) log(n) = o(n). Thus, ε̂T ε̂ − supλ∈	n+ εT (PMλ −
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PA0)ε = Op(n). Furthermore, applying (6.4) by letting t = 8 log(p) − 1, we have
for all n sufficiently large,

P

(
sup

λ∈	n+

εT (PMλ − PA0)ε

|Mλ| − q
> 16σ 2 log(p)

)

≤
p∑

|Mλ|=q+1

(
p − q

|Mλ| − q

)
exp

(
−(|Mλ| − q)t

2

)
(1 + t)(|Mλ|−q)/2

=
p−q∑
k=1

(
p − q

k

)
exp

(−2k log(p)
)(

8 log(p)
)k/2

=
p−q∑
k=1

(
p − q

k

)(√
8 log(p)

p2
n

)k

≤
(

1 +
√

8 log(p)

p2

)p−q

− 1 → 0.

Thus with probability approaching one, for all n sufficiently large,

Cn log(p)

n
− supλ∈	n+ εT (PMλ − PA0)ε/(|Mλ| − q)

ε̂T ε̂ − supλ∈	n+ εT (PMλ − PA0)ε

> n−1Cn log(p) − n−1O
(
log(p)

)
> 0,

since Cn → ∞. This finishes the proof. �

PROOF OF THEOREM 3.6. We will first prove that there exists a constant
C > 0 such that for Fn4 = {maxj |β̂(1)

j − β∗
j | ≤ Cτλ}, we have

P(Fn4) ≥ 1 − 2p exp
(−nτ 2λ2

8σ 2

)
.(6.5)

Let Fn5 = {|Sj (β
∗)| ≤ τλ/2 for all j}. Since

P
(
Fc

n5
) ≤

p∑
j=1

P
(∣∣xT

(j)ε/n
∣∣ > τλ/2

) ≤ 2p exp
(−nτ 2λ2

8σ 2

)
,

we have

P(Fn5) ≥ 1 − 2p exp
(−nτ 2λ2

8σ 2

)
.

Hence to prove (6.5), it suffices to show that Fn5 ⊂ Fn4.
Let

θ = inf
{
q‖XT Xu‖∞

n‖u‖1
:‖uAc

0
‖1 ≤ 3‖uA0‖1

}
.
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Corollary 2 of Zhang and Zhang (2012) proves that on the event Fn5, |A ∪ A0| ≤
(α + 1)q , where A = {j : β̂(1)

j �= 0}, provided

ξmax(αq)

α
≤ 1

36
θ.

Since θ ≥ γ 2/16 [see (7) of Zhang and Zhang (2012)], where γ is defined in (A4)
and

γ ≥ √
κmin

(
1 − 3

√
ξmax(αq)

ακmin

)
[see Bickel, Ritov and Tsybakov (2009)], condition (A4′) implies that

Fn5 ⊂ {|A ∪ A0| ≤ (α + 1)q
}
.(6.6)

Let C(β) = (2n)−1‖y − Xβ‖2 + τλ
∑p

j=1 |βj |. Then we have

C(β) − C
(
β∗) =

p∑
j=1

(
βj − β∗

j

)
Sj

(
β∗) + (

β − β∗)T XT X
(
β − β∗)

/(2n)

+ τλ

p∑
j=1

(|βj | −
∣∣β∗

j

∣∣).
Let X̂β∗ be the projection of Xβ∗ onto span(XA), the linear subspace spanned
by the column vectors of XA. We define the p-dimensional vector γ ∗ such that
X̂β∗ = XAγ ∗

A and γ ∗
j = 0 for j ∈ Ac. We have(

β̂(1) − β∗)T XT X
(
β̂(1) − β∗)

= (
β̂

(1)
A − γ ∗

A

)T XT
AXA

(
β̂

(1)
A − γ ∗

A

) + ∥∥Xβ∗ − XAγ ∗
A

∥∥2
.

Therefore, we can write

β̂(1) = arg min
β : βAc=0

{∑
j∈A

βjSj

(
β∗)

+ (
βA − γ ∗

A

)T XT
AXA

(
βA − γ ∗

A

)
/2n + τλ

∑
j∈A

|βj |
}
.

Hence β̂
(1)
A − γ ∗

A = (XT
AXA/n)−1θA, where θ ∈ Rp such that θj = 0 for j ∈ Ac

and θj = −Sj (β)−sign(β̂j )τλ for j ∈ A. On Fn5, maxj |θj | ≤ 3τλ/2. Therefore,
condition (A6) with (6.6) implies that on the event Fn5,

max
j∈A

∣∣β̂(1)
j − γ ∗

j

∣∣ ≤ ηmin3τλ/2.(6.7)

It follows from (6.7) that inequality (6.5) holds if we show that A0 ⊂ A, in which
case γ ∗

A = β∗
A. We will prove this by contradiction. Assume A(−) = A0 ∩ Ac is
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nonempty. Let x̂(j) be the projection of x(j) onto span(XA) and let x̃(j) = x(j) −
x̂(j), j ∈ A(−). Then, we can write

Xβ∗ = XAγ ∗
A + ∑

j∈A−
x̃(j)β

∗
j .

Let ỹ = ∑
j∈A− x̃(j)β

∗
j . By Lemma 6.1 below, there exists l ∈ A− such that∣∣xT

(l)ỹ/n
∣∣ ≥ κmind∗.(6.8)

By the KKT condition, we have |xT
(l)(Xβ∗ − Xβ̂(1))/n + Sl(β

∗)| ≤ τλ. However
we can write xT

(l)(Xβ∗ −Xβ̂(1))/n = xT
(l)XA(γ ∗

A − β̂
(1)
A )/n+xT

(l)ỹ/n. The inequal-
ities (6.8) and (6.7) with condition (A6) imply that on Fn5∣∣xT

(l)

(
Xβ∗ − Xβ̂(1))/n + Sl

(
β∗)∣∣

≥ ∣∣xT
(l)ỹ/n

∣∣ − ∣∣xT
(l)XA

(
γ ∗

A − β̂
(1)
A

)
/n

∣∣ − ∣∣Sl

(
β∗)∣∣

≥ ∣∣xT
(l)ỹ/n

∣∣ − ∥∥XT
A∪A0

XA∪A0

∥∥
1

∥∥γ ∗
A − β̂

(1)
A

∥∥∞ − ∣∣Sl

(
β∗)∣∣

≥ κmind∗ − ηmaxηmin3τλ/2 − τλ/2 > τλ

if d∗ > 3τλ(ηmaxηmin + 1)/(2κmin), which contradicts the KKT condition. Hence,
we eventually have A0 ⊂ A on Fn5 and this proves (6.5).

We now slightly modify the proof of (1) of Theorem 3.2. More specifically,
replacing Fn3 by Fn4, we can show that Fn1 ∩Fn2 ∩Fn4 ⊂ {β̂(λ) = β̂(o)}, and this
proves (1). The result in (2) follows immediately from (1). The proof of (3) can be
done similarly to that of Theorem 3.5. �

In the proof of Theorem 3.6, we have used the following lemma, whose proof
is given in the online supplementary material [Wang, Kim and Li (2013)].

LEMMA 6.1. There exists l ∈ A− which satisfies (6.8).

PROOF OF THEOREM 5.2. By (5.1), a local minimizer β necessarily satisfies:

−n−1xT
(j)(y − Xβ) + ξj = 0, j = 1, . . . , p,(6.9)

where ξj = λlj − ∂hn(β)
∂βj

, with lj = sign(βj ) if βj �= 0 and lj ∈ [−1,1] otherwise,
1 ≤ j ≤ p. It is easy to see that |ξj | ≤ λ, 1 ≤ j ≤ p. Although the objective func-
tion is nonconvex, abusing the notation a little, we refer to the collection of all
vectors in the form of the left-hand side of (6.9) as the subdifferential ∂Qn(β) and
refer to a specific element of this set a subgradient. Then the necessary condition
stated above can be considered as an extension of the classical KKT condition.

Alternatively, minimizing Qn(β) can be expressed as a constrained smooth
minimization problem [e.g., Kim, Choi and Oh (2008)]. By the corresponding
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second-order sufficiency of KKT condition [e.g., Bertsekas (1999), page 320], β̂
is a local minimizer of Qn(β) if

n−1xT
(j)(y − Xβ̂) = sgn(β̂j )ṗλ(β̂j ), β̂j �= 0,

n−1∣∣xT
(j)(y − Xβ̂)

∣∣ ≤ λ, β̂j = 0.

Consider the event Fn = Fn2 ∩ Fn6, where Fn2 is defined in Lemma 3.1 with
b2 = 1, and Fn6 = {minj∈A0 |β̂(o)

j | ≥ aλ}. Since |β̂(o)
j | ≥ |β∗

j | − |β̂(o)
j − β∗

j | and
λ = o(d∗), similarly as in the proof for Lemma 3.1, we can show that for all n

sufficiently large, P(Fn6) ≥ 1 − 2q exp[−C1n(d∗ − aλ)2/(2σ 2)]. By Lemma 3.1,
for all n sufficiently large, P(Fn) ≥ 1 − 2q exp[−C1n(d∗ − aλ)2/(2σ 2)] − 2(p −
q) exp[−nλ2/(2σ 2)]. It is apparent that on the event Fn, the oracle estimator β̂(o)

satisfies the above sufficient condition. Therefore, by (6.9), there exist |ξ (o)
j | ≤ λ,

1 ≤ j ≤ p, such that

−n−1xT
(j)

(
y − Xβ̂(o)) + ξ

(o)
j = 0.

Abusing notation a little, we denote this zero vector by ∂
∂β Qn(β̂

(o)).

Now for any local minimizer β̂ which satisfies the sparsity constraint ‖β̂‖0 ≤
qun, we will prove by contradiction that under the conditions of the theorem we
must have ‖β̂ − β̂(o)‖ ≤ 2λ

√
qu∗

nξ
−1
min(qu∗

n), where u∗
n = un + 1. More specifically,

we will derive a contradiction by showing that none of the subgradients of Qn(β)

can be zero at β = β̂ .
Assume instead that ‖β̂ − β̂(o)‖ > 2λ

√
qu∗

nξ
−1
min(qu∗

n). Let A∗ = {j : β̂j �= 0 or

β̂
(o)
j �= 0}, then ‖β̂A∗ − β̂

(o)
A∗ ‖ > 2λ

√
qu∗

nξ
−1
min(qu∗

n). Let ∂
∂β Qn(β̂) = −n−1xT

(j)(y−
Xβ̂) + ηj be an arbitrary subgradient in the subdifferential ∂Qn(β̂). Let η =
(η1, . . . , ηp)T , then ηj satisfies |ηj | ≤ λ, 1 ≤ j ≤ p. We use ∂

∂βA∗ Qn(β̂) to denote

the size-|A∗| subvector of ∂
∂β Qn(β̂), that is, ∂

∂βA∗ Qn(β̂) = ( ∂
∂βj

Qn(β̂) : j ∈ A∗)T .

And ∂
∂βA∗ Qn(β̂

(o)) is defined similarly. We have∣∣∣∣( ∂

∂βA∗
Qn(β̂)

)T (β̂A∗ − β̂
(o)
A∗ )

‖β̂A∗ − β̂
(o)
A∗ ‖

∣∣∣∣
=

∣∣∣∣( ∂

∂βA∗
Qn(β̂) − ∂

∂βA∗
Qn

(
β̂(o)))T (β̂A∗ − β̂

(o)
A∗ )

‖β̂A∗ − β̂
(o)
A∗ ‖

∣∣∣∣
= ∣∣n−1(

β̂A∗ − β̂
(o)

A∗
)T XT

A∗XA∗
(
β̂A∗ − β̂

(o)
A∗

)
/
∥∥β̂A∗ − β̂

(o)
A∗

∥∥
+ (

ηA∗ − ξ
(o)
A∗

)T (
β̂A∗ − β̂

(o)
A∗

)
/
∥∥β̂A∗ − β̂

(o)
A∗

∥∥∣∣
≥ φmin

(
n−1XT

A∗XA∗
)∥∥β̂A∗ − β̂

(o)
A∗

∥∥ − 2λ
√

qu∗
n

> ξmin
(
qu∗

n

)
2λ

√
qu∗

nξ
−1
min

(
qu∗

n

) − 2λ
√

qu∗
n = 0,
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where the second equality follows from the expression of subgradient, the second
last inequality applies the Cauchy–Schwarz inequality, and the last inequality fol-
lows from the relaxed SRC condition in an L0-neighborhood of the true model.
Thus, this contradicts with the fact that at least one of the subgradients is zero if β̂

is a local minimizer and the theorem is proved. �

PROOF OF COROLLARY 5.3. It follows directly from Theorem 5.2. �

SUPPLEMENTARY MATERIAL

Supplement to “Calibrating nonconvex penalized regression in ultra-high
dimension” (DOI: 10.1214/13-AOS1159SUPP; .pdf). This supplemental material
includes the proofs of Lemmas 3.1 and 6.1, and some additional numerical results.
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