Feature Screening in Ultrahigh Dimensional Generalized Varying-coefficient Models

Guangren Yang¹, Songshan Yang² and Runze Li²

¹Jinan University, ²Pennsylvania State University

Proof of Theorem 1. It follows by the Taylor expansion for the quasilikelihood function $\ell(\gamma)$ at β lying within a neighbor of γ that

$$\ell(\boldsymbol{\gamma}) = \ell(\boldsymbol{\beta}) + (\boldsymbol{\gamma} - \boldsymbol{\beta})^T \ell'(\boldsymbol{\beta}) + \frac{1}{2} (\boldsymbol{\gamma} - \boldsymbol{\beta})^T \ell''(\tilde{\boldsymbol{\beta}}) (\boldsymbol{\gamma} - \boldsymbol{\beta}),$$

where $\tilde{\boldsymbol{\beta}}$ lies between $\boldsymbol{\gamma}$ and $\boldsymbol{\beta}$. For $(\boldsymbol{\gamma} - \boldsymbol{\beta})^T \ell''(\tilde{\boldsymbol{\beta}})(\boldsymbol{\gamma} - \boldsymbol{\beta})$ term, we have

$$\begin{aligned} & (\boldsymbol{\gamma} - \boldsymbol{\beta})^T \{-\ell''(\boldsymbol{\beta})\}(\boldsymbol{\gamma} - \boldsymbol{\beta}) \\ &= (\boldsymbol{\gamma} - \boldsymbol{\beta})^T W^{1/2}(\boldsymbol{\beta}) W^{-1/2}(\boldsymbol{\beta}) \{-\ell''(\tilde{\boldsymbol{\beta}})\} W^{-1/2}(\boldsymbol{\beta}) W^{1/2}(\boldsymbol{\beta})(\boldsymbol{\gamma} - \boldsymbol{\beta}) \\ &\leq \lambda_{\max} [W^{-1/2}(\boldsymbol{\beta}) \{-\ell''(\tilde{\boldsymbol{\beta}})\} W^{-1/2}(\boldsymbol{\beta})](\boldsymbol{\gamma} - \boldsymbol{\beta})^T W(\boldsymbol{\beta})(\boldsymbol{\gamma} - \boldsymbol{\beta}), \end{aligned}$$

where $W(\boldsymbol{\beta})$ is a block diagonal matrix with $W_j(\boldsymbol{\beta})$ being a $d_{nj} \times d_{nj}$ matrix. Since $-\ell''(\boldsymbol{\beta})$ is non-negative definite, $\lambda_{\max}[W^{-1/2}(\boldsymbol{\beta})\{-\ell''(\boldsymbol{\tilde{\beta}})\}W^{-1/2}(\boldsymbol{\beta})] \geq 0$ Thus, if

$$u > \lambda_{\max}[W^{-1/2}(\boldsymbol{\beta})\{-\ell''(\tilde{\boldsymbol{\beta}})\}W^{-1/2}(\boldsymbol{\beta})],$$

then

$$\ell(\boldsymbol{\gamma}) \geq \ell(\boldsymbol{\beta}) + (\boldsymbol{\gamma} - \boldsymbol{\beta})^T \ell'(\boldsymbol{\beta}) - \frac{u}{2} (\boldsymbol{\gamma} - \boldsymbol{\beta})^T W(\boldsymbol{\beta}) (\boldsymbol{\gamma} - \boldsymbol{\beta}) = h(\boldsymbol{\gamma}|\boldsymbol{\beta}).$$

Thus it follows that $\ell(\boldsymbol{\gamma}) \geq h(\boldsymbol{\gamma}|\boldsymbol{\beta})$ and $\ell(\boldsymbol{\beta}) = h(\boldsymbol{\beta}|\boldsymbol{\beta})$ by the definition of $h(\boldsymbol{\gamma},\boldsymbol{\beta})$. The solution of $\partial h(\boldsymbol{\gamma}|\boldsymbol{\beta})/\partial \boldsymbol{\gamma} = 0$ is $\boldsymbol{\gamma} = \boldsymbol{\beta} + u^{-1}W(\boldsymbol{\beta})\ell'(\boldsymbol{\beta})$. Hence, under the conditions of Theorem 1, it follows that

$$\ell(\boldsymbol{\beta}^{*(t+1)}) \ge h(\boldsymbol{\beta}^{*(t+1)}|\boldsymbol{\beta}^{(t)}) \ge h(\boldsymbol{\beta}^{(t)}|\boldsymbol{\beta}^{(t)}) = \ell(\boldsymbol{\beta}^{(t)}).$$

The second inequality is due to the fact that $\tau(\{j : \|\boldsymbol{\beta}_{j}^{*(t+1)}\|_{2} > 0\}) = \tau(\{j : \|\boldsymbol{\beta}_{j}^{(t)}\|_{2} > 0\}) = m$, and $\boldsymbol{\beta}^{*(t+1)} = \arg \max_{\boldsymbol{\gamma}} h(\boldsymbol{\gamma}|\boldsymbol{\beta}^{(t)})$ subject to $\tau(\{j : \|\boldsymbol{\gamma}_{j}\|_{2} > 0\}) \leq m$. By definition of $\boldsymbol{\beta}^{(t+1)}, \ell(\boldsymbol{\beta}^{(t+1)}) \geq \ell(\boldsymbol{\beta}^{*(t+1)})$ and $\tau(\{j : \|\boldsymbol{\beta}_{j}^{(t+1)}\|_{2} > 0\}) = m$. This proves Theorem 1. \Box **Proof of Theorem 2.** For a given model *s*, a subset of $\{1, \ldots, p\}$, let $\hat{\boldsymbol{\alpha}}_{s}(\cdot)$ be the unrestricted maximum likelihood estimation of $\boldsymbol{\alpha}_{s}(\cdot)$ based on the spline approximation. It suffices to show that

$$Pr\left[\max_{s\in S^m_-} \ell\{\hat{\boldsymbol{\alpha}}_s(U)\} \ge \min_{s\in S^m_+} \ell\{\hat{\boldsymbol{\alpha}}_s(U)\}\right] \longrightarrow 0,$$
(A.1)

as $n \to \infty$.

We approximate $\alpha_j(U)$ by

$$\alpha_{nj}(U) = \sum_{k=1}^{d_n} \beta_{jk} \psi_{jk}(U) = \boldsymbol{\beta}_j^T \boldsymbol{\psi}_j(U), \quad j = 1, \cdots, p, \qquad (A.2)$$

where $\psi_{ik}(U)$, $k = 1, \ldots, d_n$, are basis functions and d_n is the number of basis functions, which is allowed to increase with the sample size n.

Let S_j denote all functions that have the form $\sum_{k=1}^{d_n} \beta_{jk} \psi_{jk}(U)$ for a given set of basis $\{\psi_{jk}, k = 1, \ldots, d_n\}$. For $\alpha_{nj}(U)$, define the approximation error by

$$\rho_j(U) = \alpha_j(U) - \alpha_{nj}(U) = \alpha_j(U) - \sum_{k=1}^{d_n} \beta_{jk} \psi_{jk}(U), \quad j = 1, \dots, p.$$

Let dist $(\alpha_j(\cdot), \mathcal{S}_j) = \inf_{\alpha_{nj}(U) \in \mathcal{S}_j} \sup_{U \in [a,b]} \|\rho_j(U)\|_2$, and take $\rho = \max_{1 \le j \le p} \operatorname{dist}(\alpha_j(\cdot), \mathcal{S}_j)$. Let $\boldsymbol{\alpha}_n(U) = (\alpha_{n1}(U), \dots, \alpha_{np}(U))^T$ and $\boldsymbol{\alpha}(U) = (\alpha_1(U), \dots, \alpha_p(U))^T$. For any s,

$$\boldsymbol{\alpha}_{s}(U) = \begin{pmatrix} \boldsymbol{\psi}_{1}(U) & & \\ & \ddots & \\ & & \boldsymbol{\psi}_{s}(U) \end{pmatrix}_{s \times sd_{n}} \begin{pmatrix} \boldsymbol{\beta}_{1} \\ \vdots \\ \boldsymbol{\beta}_{s} \end{pmatrix}_{sd_{n} \times 1} + \begin{pmatrix} \rho_{1}(U) \\ \vdots \\ \rho_{s}(U) \end{pmatrix}$$

$$= \Psi_{s}(U)\boldsymbol{\beta}_{s} + \rho_{s}(U),$$

where $\Psi_s(U) = \operatorname{diag}(\psi_1(U), \ldots, \psi_s(U))$ with $\psi_j(U) = (\psi_{j1}(U), \ldots, \psi_{jd_n}(U))$ and $\boldsymbol{\beta}_j = (\beta_{j1}, \dots, \beta_{jd_n})^T$, $j = 1, \dots, s$. For any $s \in S^m_-$, define $s' = s \cup s^* \in S^{2m}_+$. So, we have

$$\ell\{\boldsymbol{\alpha}_{s'}(U)\} - \ell\{\boldsymbol{\alpha}_{s'}^{*}(U)\} \\ = \ell\{\Psi_{s'}(U)\boldsymbol{\beta}_{s'} + \rho_{s'}(U)\} - \ell\{\Psi_{s'}(U)\boldsymbol{\beta}_{s'}^{*} + \rho_{s'}^{*}(U)\} \\ = \ell\{\Psi_{s'}(U)\boldsymbol{\beta}_{s'}\} + \ell'\{\Psi_{s'}(U)\tilde{\boldsymbol{\beta}}_{s'}\}\rho_{s'}(U) - \ell\{\Psi_{s'}(U)\boldsymbol{\beta}_{s'}^{*}\} - \ell'\{\Psi_{s'}(U)\tilde{\boldsymbol{\beta}}_{s'}^{*}\}\rho_{s'}^{*}(U),$$

where $\tilde{\boldsymbol{\beta}}_{s'}$ and $\tilde{\boldsymbol{\beta}}_{s'}^*$ are two immediate values. Denote

$$\Delta_1 = \ell(\boldsymbol{\beta}_{s'}) - \ell(\boldsymbol{\beta}_{s'}^*), \quad \Delta_2 = \ell'(\tilde{\boldsymbol{\beta}}_{s'})\rho_{s'}(U), \quad \Delta_3 = \ell'(\tilde{\boldsymbol{\beta}}_{s'}^*)\rho_{s'}^*(U).$$

Thus,

$$\ell\{\boldsymbol{\alpha}_{s'}(U)\} - \ell\{\boldsymbol{\alpha}_{s'}^*(U)\} = \Delta_1 + \Delta_2 - \Delta_3.$$

For Δ_2 , by the Cauchy-Schwartz inequality, we have

$$E|\Delta_{2}| = E|\ell'(\tilde{\boldsymbol{\beta}}_{s'})\rho_{s'}(U)| \le \sqrt{E}\|\ell'(\tilde{\boldsymbol{\beta}}_{s'})\|^{2}\sqrt{E}\|\rho_{s'}(U)\|^{2}.$$

According to the property of quasi-likelihood, we have

$$E\|\ell'(\tilde{\boldsymbol{\beta}}_{s'})\|^2 = \mathrm{tr} E\{\ell'(\tilde{\boldsymbol{\beta}}_{s'})\ell'(\tilde{\boldsymbol{\beta}}_{s'})^T\} = -\mathrm{tr} E\ell''(\tilde{\boldsymbol{\beta}}_{s'}).$$

By condition (C6) and Corollary 1 in Wei, Huang, and Li (2011), it follows $\Delta_2 = o_p(1)$. Similarly Δ_2 , we have $\Delta_3 = o_p(1)$.

Next, we consider Δ_1 . By Wedderburn (Part 5, 1974), the quasi-score function of $\boldsymbol{\beta}_s$ is given by

$$S_n(\boldsymbol{\beta}_s) = \frac{\partial \ell(\boldsymbol{\beta}_s)}{\partial \boldsymbol{\beta}_s} = \sum_{i=1}^n \frac{\mu'(\mathbf{z}_{is}^T \boldsymbol{\beta}_s)}{V(\mathbf{z}_{is}^T \boldsymbol{\beta}_s)} [Y_i - E(Y_i | \mathbf{z}_i)] \mathbf{z}_{is},$$

where $\mu'(t)$ is the first-order derivative of $\mu(t)$. Let $H_n(\boldsymbol{\beta}_s) = -\partial^2 \ell(\boldsymbol{\beta}_s)/\partial \boldsymbol{\beta}_s \partial \boldsymbol{\beta}_s^T$ be the Hessian matrix of $\ell(\boldsymbol{\beta}_s)$ corresponding to $\boldsymbol{\beta}_s$.

Under (C3), we consider $\boldsymbol{\beta}_{s'}$ close to $\boldsymbol{\beta}_{s'}^*$ such that $\|\boldsymbol{\beta}_{s'} - \boldsymbol{\beta}_{s'}^*\| = w_1 d_n n^{-\tau_1}$ for some $w_1, \tau_1 > 0$. Clearly, when n is sufficiently large, $\boldsymbol{\beta}_{s'}$ falls into a neighborhood of $\boldsymbol{\beta}_{s'}^*$, so that condition (C6) becomes applicable. Thus, it follows by Condition (C6) and the Cauchy-Schwarz inequality that, we have

$$\begin{split} \Delta_{1} &= \ell(\boldsymbol{\beta}_{s'}) - \ell(\boldsymbol{\beta}_{s'}^{*}) \\ &= [\boldsymbol{\beta}_{s'} - \boldsymbol{\beta}_{s'}^{*}]^{T} S_{n}(\boldsymbol{\beta}_{s'}^{*}) - (1/2) [\boldsymbol{\beta}_{s'} - \boldsymbol{\beta}_{s'}^{*}]^{T} H_{n}(\tilde{\boldsymbol{\beta}}_{s'}) [\boldsymbol{\beta}_{s'} - \boldsymbol{\beta}_{s'}^{*}] \\ &\leq [\boldsymbol{\beta}_{s'} - \boldsymbol{\beta}_{s'}^{*}]^{T} S_{n}(\boldsymbol{\beta}_{s'}^{*}) - (C_{1}/2) n d_{n}^{-1} \| \boldsymbol{\beta}_{s'} - \boldsymbol{\beta}_{s'}^{*} \|_{2}^{2} \\ &\leq w_{1} d_{n} n^{-\tau_{1}} \| S_{n}(\boldsymbol{\beta}_{s'}^{*}) \|_{2} - (C_{1}/2) d_{n}^{-1} w_{1}^{2} d_{n}^{2} n^{1-2\tau_{1}}, \end{split}$$
(A.3)

where $\hat{\beta}_{s'}$ is an intermediate value between $\beta_{s'}$ and $\beta^*_{s'}$. Thus, we have

$$Pr\{\ell(\boldsymbol{\beta}_{s'}) - \ell(\boldsymbol{\beta}_{s'}^*) \ge 0\} \le Pr\{\|S_n(\boldsymbol{\beta}_{s'}^*)\|_2 \ge (C_1w_1/2)n^{1-\tau_1}\} \\ \le \sum_{j \in s'} Pr\{S_{nj}^2(\boldsymbol{\beta}_{s'}^*) \ge (2m)^{-1}(C_1w_1/2)^2n^{2-2\tau_1}\},$$

where

$$S_{nj}(\boldsymbol{\beta}_{s'}^*) = \sum_{i=1}^n \frac{\mu'(\mathbf{z}_{is'}^T \boldsymbol{\beta}_{s'})}{V(\mathbf{z}_{is'}^T \boldsymbol{\beta}_{s'})} [Y_i - E(Y_i | \mathbf{z}_i)] z_{ij}$$

Let $t_{ni} = z_{ij} (\sum_{i=1}^{n} z_{ij}^2)^{-1/2}$ such that $\sum_{i=1}^{n} t_{ni}^2 = 1$, and $\mu'(\mathbf{z}_{is'}^T \boldsymbol{\beta}_{s'})/V(\mathbf{z}_{is'}^T \boldsymbol{\beta}_{s'})$ is bounded by constant M under condition (C5). Under Condition (C6), we have $\max_i \{t_{ni}^2\} = O_P(n^{-1})$. By condition (C3), we have $m \leq w_2 n^{\tau_2}$. These conditions give the exponential bounds for sums of bounded variable probability inequality (Lin and Bai, 2009, Page 74), we have

$$Pr\{S_{nj}(\boldsymbol{\beta}_{s'}^{*}) \geq (C_{1}w_{1}/2)(2m)^{-1/2}n^{1-\tau_{1}}\}$$

$$\leq Pr\{S_{nj}(\boldsymbol{\beta}_{s'}^{*}) \geq (C_{1}w_{1}/2)(2w_{2})^{-1/2}n^{-0.5\tau_{2}}n^{1-\tau_{1}}\}$$

$$\leq Pr\left\{\sum_{i=1}^{n} t_{ni}[Y_{i} - E(Y_{i}|\mathbf{z}_{i})] > cn^{0.5(1-2\tau_{1}-\tau_{2})}\right\}$$

$$\leq \exp\left(-(c^{2}/2)n^{1-2\tau_{1}-\tau_{2}}\right), \qquad (A.4)$$

where $c = C_1 w_1 / (2M\sqrt{2w_2})$. Also, by the same arguments, we have

$$Pr\{S_{nj}(\boldsymbol{\beta}_{s'}^*) \le -(C_1w_1/2)(2m)^{-1/2}n^{1-\tau_1}\} \le \exp\left(-(c^2/2)n^{1-2\tau_1-\tau_2}\right),$$
(A.5)

The inequalities (A.4) and (A.5) imply that,

$$Pr\{\ell(\boldsymbol{\beta}_{s'}) \ge \ell(\boldsymbol{\beta}_{s'}^*)\} \le 4m \exp\left(-(c^2/2)n^{1-2\tau_1-\tau_2}\right).$$

So, under condition (C4), we have

$$Pr\left\{\max_{s\in S_{-}^{m}}\ell(\boldsymbol{\beta}_{s'}) \geq \ell(\boldsymbol{\beta}_{s'}^{*})\right\}$$

$$\leq \sum_{s\in S_{-}^{m}} Pr\{\ell(\boldsymbol{\beta}_{s'}) \geq \ell(\boldsymbol{\beta}_{s'}^{*})\}$$

$$\leq 4mp^{m} \exp\{-0.5c^{2}n^{1-2\tau_{1}-\tau_{2}}\}$$

$$= 4\exp\{\log m + m\log p - 0.5c^{2}n^{1-2\tau_{1}-\tau_{2}}\}$$

$$\leq 4\exp\{\log w_{2} + \tau_{2}\log n + w_{2}n^{\tau_{2}}\log p - 0.5c^{2}n^{1-2\tau_{1}-\tau_{2}}\}$$

$$= 4w_{2}\exp\{\tau_{2}\log n + w_{2}n^{\tau_{2}}\log p - 0.5c^{2}n^{1-2\tau_{1}-\tau_{2}}\}$$

$$= o(1) \quad \text{as} \quad n \to \infty. \tag{A.6}$$

By Condition (C6), $\ell(\boldsymbol{\beta}_{s'})$ is concave in $\boldsymbol{\beta}_{s'}$, (A.6) holds for any $\boldsymbol{\beta}_{s'}$ such that $\|\boldsymbol{\beta}_{s'} - \boldsymbol{\beta}_{s'}^*\| = w_1 d_n n^{-\tau_1}$.

For any $s \in S_{-}^{m}$, let $\check{\boldsymbol{\beta}}_{s'}$ be $\hat{\boldsymbol{\beta}}_{s}$ augmented with zeros corresponding to the elements in $s' \setminus s^{*}$ (i.e. $s' = \{s \cup (s^{*} \setminus s)\} \cup (s' \setminus s^{*})$). By Condition (C1), it is seen that $\|\check{\boldsymbol{\beta}}_{s'} - \boldsymbol{\beta}_{s'}^{*}\|_{2} = \|\check{\boldsymbol{\beta}}_{s^{*} \cup (s' \setminus s^{*})} - \boldsymbol{\beta}_{s^{*} \cup (s' \setminus s^{*})}^{*}\|_{2} = \|\check{\boldsymbol{\beta}}_{s^{*} \cup (s' \setminus s^{*})} - \boldsymbol{\beta}_{s^{*}}^{*}\|_{2} \geq \|\boldsymbol{\beta}_{s' \cup (s' \setminus s^{*})}^{*} - \boldsymbol{\beta}_{s^{*}}^{*}\|_{2} \geq \|\boldsymbol{\beta}_{s' \setminus s^{*}}^{*}\|_{2} = w_{1}d_{n}n^{-\tau_{1}}$. Consequently,

$$Pr\left\{\max_{s\in S^m_-}\ell(\hat{\boldsymbol{\beta}}_s)\geq\min_{s\in S^m_+}\ell(\hat{\boldsymbol{\beta}}_s)\right\}\leq Pr\left\{\max_{s\in S^m_-}\ell_p(\check{\boldsymbol{\beta}}_{s'})\geq\ell_p(\boldsymbol{\beta}^*_{s'})\right\}=o(1).$$

So, we have shown that

$$Pr\left[\max_{s\in S^m_-}\ell\{\hat{\boldsymbol{\alpha}}_s(U)\}\geq \min_{s\in S^m_+}\ell\{\hat{\boldsymbol{\alpha}}_s(U)\}\right]\longrightarrow 0,$$

as $n \to \infty$. The theorem is proved.

Proof of Theorem 3. According to the definition of HBIC, for any model $s, HBIC(\tau(s)) \leq HBIC(q)$ implies that

$$\ell(\hat{\boldsymbol{\beta}}_{s}) - \ell(\hat{\boldsymbol{\beta}}_{s^{*}}) \geq d_{n} \{\tau(s) - q\} \frac{C_{n} \log(d_{n}p)}{2n}$$
$$\geq -d_{n}q \frac{C_{n} \log(d_{n}p)}{2n}. \tag{A.7}$$

We show that the probability that (A.7) occurs at any $s \in S^m_-$ goes to 0. For any $s \in S^m_-$, let $\tilde{s} = s \cup s^*$. To consider those $\beta_{\tilde{s}}$ near $\beta_{\tilde{s}}^*$, we have

$$\ell(\boldsymbol{\beta}_{\tilde{s}}) - \ell(\boldsymbol{\beta}_{\tilde{s}}^*) = \{\boldsymbol{\beta}_{\tilde{s}} - \boldsymbol{\beta}_{\tilde{s}}^*\}^T \ell'(\boldsymbol{\beta}_{\tilde{s}}^*) - \frac{1}{2}\{\boldsymbol{\beta}_{\tilde{s}} - \boldsymbol{\beta}_{\tilde{s}}^*\}^T [-\ell''(\tilde{\boldsymbol{\beta}}_{\tilde{s}}^*)]\{\boldsymbol{\beta}_{\tilde{s}} - \boldsymbol{\beta}_{\tilde{s}}^*\},$$

for some $\tilde{\boldsymbol{\beta}}_{\tilde{s}}^*$ between $\boldsymbol{\beta}_{\tilde{s}}$ and $\boldsymbol{\beta}_{\tilde{s}}^*$. By Condition (C6),

$$\{\boldsymbol{\beta}_{\tilde{s}}-\boldsymbol{\beta}_{\tilde{s}}^*\}^T[-\ell''(\tilde{\boldsymbol{\beta}}_{\tilde{s}}^*)]\{\boldsymbol{\beta}_{\tilde{s}}-\boldsymbol{\beta}_{\tilde{s}}^*\}\geq C_1d_n^{-1}n\|\boldsymbol{\beta}_{\tilde{s}}-\boldsymbol{\beta}_{\tilde{s}}^*\|^2.$$

Therefore,

$$\ell(\boldsymbol{\beta}_{\tilde{s}}) - \ell(\boldsymbol{\beta}_{\tilde{s}}^*) \leq \{\boldsymbol{\beta}_{\tilde{s}} - \boldsymbol{\beta}_{\tilde{s}}^*\}^T \ell'(\boldsymbol{\beta}_{\tilde{s}}^*) - \frac{C_1}{2} d_n^{-1} n \|\boldsymbol{\beta}_{\tilde{s}} - \boldsymbol{\beta}_{\tilde{s}}^*\|^2$$

Hence, for any $\beta_{\tilde{s}}$ such that $\|\beta_{\tilde{s}} - \beta_{\tilde{s}}^*\| = w_1 d_n n^{-\tau_1}$, we have

$$\ell(\boldsymbol{\beta}_{\tilde{s}}) - \ell(\boldsymbol{\beta}_{\tilde{s}}^{*}) \le w_{1}d_{n}n^{-\tau_{1}} \|\ell'(\boldsymbol{\beta}_{\tilde{s}}^{*})\| - \frac{C_{1}}{2}d_{n}^{-1}n(w_{1}d_{n}n^{-\tau_{1}})^{2}$$

By (A.4), (A.5) and (A.6), we can get

$$Pr\left\{\sup_{s\in S_{-}^{m}}\ell(\boldsymbol{\beta}_{\tilde{s}})\geq\ell(\boldsymbol{\beta}_{\tilde{s}}^{*})\right\}=o(1).$$

Now let $\check{\beta}_{\tilde{s}}$ be $\hat{\beta}_s$ augmented with zeros corresponding to the elements in $\tilde{s} \backslash s$. It can be seen that

$$\|\check{\boldsymbol{\beta}}_{\tilde{s}} - \boldsymbol{\beta}_{\tilde{s}}^*\| \ge \|\boldsymbol{\beta}_{s^*\setminus s}^*\| = w_1 d_n n^{-\tau_1},$$

by (C3). Therefore, uniformly over $s \in S^m_-$ and with probability tending to 1,

$$Pr\left\{\sup_{s\in S^m_{-}}\ell(\hat{\boldsymbol{\beta}}_{\tilde{s}}) \geq \ell(\boldsymbol{\beta}^*_{\tilde{s}})\right\} \leq Pr\left\{\sup_{s\in S^m_{-}}\ell(\check{\boldsymbol{\beta}}_{\tilde{s}}) \geq \ell(\boldsymbol{\beta}^*_{\tilde{s}})\right\} = o(1).$$

Hence, the probability that (A.7) occurs at any $s \in S^m_-$ tends to 0 which is (2.13).

On the other hand, for $s \in S^m_+$, let $k = \tau(s) - q$. It suffices to consider a fixed k, since k takes only the values $1, \ldots, m - q$. By definition, $HBIC(\tau(s)) \leq HBIC(q)$ if and only if

$$\ell(\hat{\boldsymbol{\beta}}_s) - \ell(\hat{\boldsymbol{\beta}}_{s^*}) \ge k d_n \frac{C_n \log(d_n p)}{2n}.$$

We show that, uniformly in $s \in S^m_+$ with $\tau(s) = k + q$, this inequality does not occur. For large n, by condition (C6),

$$\begin{split} \ell(\hat{\boldsymbol{\beta}}_{s}) - \ell(\hat{\boldsymbol{\beta}}_{s^{*}}) &\leq \ell(\hat{\boldsymbol{\beta}}_{s}) - \ell(\boldsymbol{\beta}_{s}^{*}) \\ &\leq \{\hat{\boldsymbol{\beta}}_{s} - \boldsymbol{\beta}_{s}^{*}\}^{T} \ell'(\boldsymbol{\beta}_{s}^{*}) - \frac{1}{2} \{\hat{\boldsymbol{\beta}}_{s} - \boldsymbol{\beta}_{s}^{*}\}^{T} [-\ell''(\tilde{\boldsymbol{\beta}}_{s}^{*})] \{\hat{\boldsymbol{\beta}}_{s} - \boldsymbol{\beta}_{s}^{*}\} \\ &\leq \{\hat{\boldsymbol{\beta}}_{s} - \boldsymbol{\beta}_{s}^{*}\}^{T} \ell'(\boldsymbol{\beta}_{s}^{*}) - \frac{1}{2} C_{1} d_{n}^{-1} n \{\hat{\boldsymbol{\beta}}_{s} - \boldsymbol{\beta}_{s}^{*}\}^{T} \{\hat{\boldsymbol{\beta}}_{s} - \boldsymbol{\beta}_{s}^{*}\}. \end{split}$$

where $\tilde{\boldsymbol{\beta}}_{s}^{*}$ lies between $\hat{\boldsymbol{\beta}}_{s}$ and $\hat{\boldsymbol{\beta}}_{s}^{*}$. Denote $\Delta = \hat{\boldsymbol{\beta}}_{s} - \boldsymbol{\beta}_{s}^{*}$, and define

$$f(\Delta) = \Delta^T \ell'(\boldsymbol{\beta}_s^*) - \frac{1}{2} C_1 d_n^{-1} n \Delta^T \Delta.$$

So, we have

$$\frac{\partial f(\Delta)}{\partial \Delta} = \ell'(\boldsymbol{\beta}_s^*) - C_1 d_n^{-1} n \Delta = 0$$

This implies that $f(\Delta)$ reaches its maximum at $\Delta = d_n \ell'(\hat{\boldsymbol{\beta}}_s^*)/(C_1 n)$. Thus,

$$\ell(\hat{\boldsymbol{\beta}}_s) - \ell(\hat{\boldsymbol{\beta}}_{s^*}) \leq \frac{1}{2} (C_1 n d_n^{-1})^{-1} \ell'(\boldsymbol{\beta}_s^*)^T \ell'(\boldsymbol{\beta}_s^*)$$

Hence, we show that, uniformly over $s \in S^m_+$ with $\tau(s) = k + q$,

$$\frac{1}{2}(C_1nd_n^{-1})^{-1}\ell'(\boldsymbol{\beta}_s^*)^T\ell'(\boldsymbol{\beta}_s^*) \ge kd_n\frac{C_n\log(d_np)}{2n},$$

occurs with diminishing probability. Thus, under conditions (C4) and (C6), by Markov inequality, for each $s \in S^m_+$, we have

$$Pr\left[\frac{1}{2}(C_1nd_n^{-1})^{-1}\ell'(\boldsymbol{\beta}_s^*)^T\ell'(\boldsymbol{\beta}_s^*) \ge kd_n\frac{C_n\log(d_np)}{2n}\right]$$
$$= Pr\left[\ell'(\boldsymbol{\beta}_s^*)^T\ell'(\boldsymbol{\beta}_s^*) \ge C_1kC_n\log(d_np)\right]$$
$$\le \frac{E[\ell'(\boldsymbol{\beta}_s^*)^T\ell'(\boldsymbol{\beta}_s^*)]}{C_1kC_n\log(d_np)} = \frac{E[\ell'(\boldsymbol{\beta}_s^*)^T\ell'(\boldsymbol{\beta}_s^*)]}{C_1kC_n(\log(d_n) + n^{\kappa})} \longrightarrow 0.$$

the number of models in S^m_+ is lower than p^{κ} , we have shown that

$$Pr\left[\frac{1}{2}(C_1nd_n^{-1})^{-1}\ell'(\boldsymbol{\beta}_s^*)^T\ell'(\boldsymbol{\beta}_s^*) \ge kd_n\frac{C_n\log(d_np)}{2n}, \forall s \in S_+^m\right] \longrightarrow 0,$$

This completes the proof.

CC-SIS New (SJS) \mathcal{P}_1 \mathcal{P}_2 \mathcal{P}_3 $\overline{\mathcal{P}_a}$ \mathcal{P}_3 \mathcal{P}_4 n $\boldsymbol{\alpha}(\cdot)$ \mathcal{P}_4 \mathcal{P}_1 \mathcal{P}_2 \mathcal{P}_{a} pρ 1/3 $oldsymbol{lpha}_1$ 0.995 0.992 0.987 α_2 1/20.015 0.015 α_1 α_2 0.9990.9960.9790.9702/30.995 0.997 0.995 0.3020.999 \pmb{lpha}_1 0.2970.9990.9760.9950.9840.9420.909 α_2 1/30.001 0.001 \pmb{lpha}_1 0.9920.9990.998 0.9890.979 α_2 1/20.999 0.008 α_1 0.997 0.998 0.0080.991 0.973 α_2 0.998 0.9940.9582/30.989 0.985 0.284 0.2740.993 0.993 0.987 \boldsymbol{lpha}_1 0.9740.9990.9760.9320.892 α_2 1/3 α_1 α_2 1/20.023 0.023 α_1 α_2 2/30.6230.623 \pmb{lpha}_1 α_2 1/3 α_1 α_2 1/20.011 0.011 \pmb{lpha}_1 α_2 2/30.549 0.549 \pmb{lpha}_1 α_2

Table 1: The proportions of \mathcal{P}_j s and \mathcal{P}_a for continuous response with $\Sigma = \Sigma_1$

Figure 1: Estimated Coefficient Functions for selected by the HBIC tuning parameter selector.

				CC-SIS							New (S.	JS)	
\overline{n}	p	ρ	$oldsymbol{lpha}(\cdot)$	\mathcal{P}_1	\mathcal{P}_2	\mathcal{P}_3	\mathcal{P}_4	\mathcal{P}_a	\mathcal{P}_1	\mathcal{P}_2	\mathcal{P}_3	\mathcal{P}_4	\mathcal{P}_a
200	1000	1/3	$oldsymbol{lpha}_1$	1	1	1	0.644	0.644	1	1	1	1	1
			$lpha_2$	1	1	1	1	1	1	1	1	1	1
200	1000	1/2	$oldsymbol{lpha}_1$	1	1	1	0.887	0.887	1	1	1	1	1
			$lpha_2$	1	1	0.996	0.999	0.995	1	1	1	1	1
200	1000	2/3	$oldsymbol{lpha}_1$	1	1	0.741	0.990	0.731	1	1	0.952	1	0.952
			$lpha_2$	1	0.745	0.999	1	0.744	1	1	0.998	1	0.998
200	2000	1/3	$oldsymbol{lpha}_1$	1	1	1	0.551	0.551	1	1	1	1	1
			$oldsymbol{lpha}_2$	1	1	1	1	1	1	1	1	1	1
200	2000	1/2	$oldsymbol{lpha}_1$	1	1	0.997	0.858	0.855	1	1	1	1	1
			$lpha_2$	1	0.991	0.999	1	0.990	1	1	1	1	1
200	2000	2/3	$oldsymbol{lpha}_1$	1	1	0.678	0.991	0.669	1	1	0.903	1	0.903
			$lpha_2$	0.999	0.693	0.999	1	0.692	1	1	0.996	1	0.996
400	1000	1/3	$oldsymbol{lpha}_1$	1	1	1	0.982	0.982	1	1	1	1	1
			$lpha_2$	1	1	1	1	1	1	1	1	1	1
400	1000	1/2	$oldsymbol{lpha}_1$	1	1	1	1	1	1	1	1	1	1
			$lpha_2$	1	1	1	1	1	1	1	1	1	1
400	1000	2/3	$oldsymbol{lpha}_1$	1	1	0.993	1	0.993	1	1	1	1	1
			$lpha_2$	1	0.996	1	1	0.996	1	1	1	1	1
400	2000	1/3	$oldsymbol{lpha}_1$	1	1	1	0.951	0.951	1	1	1	1	1
			$lpha_2$	1	1	1	1	1	1	1	1	1	1
400	2000	1/2	$oldsymbol{lpha}_1$	1	1	1	0.999	0.999	1	1	1	1	1
			$lpha_2$	1	1	1	1	1	1	1	1	1	1
400	2000	2/3	$oldsymbol{lpha}_1$	1	1	0.991	1	0.991	1	1	1	1	1
			$lpha_2$	1	0.986	1	1	0.986	1	1	1	1	1

Table 2: The proportions of \mathcal{P}_j s and \mathcal{P}_a for continuous response with $\Sigma = \Sigma_2$

Table 3: Computing times (Seconds) and the Number of Iterations for Continuous Response

		Σ	21		Σ_2						
	α	$oldsymbol{lpha}_1$		² 2	0	² 1	α_2				
ρ	Time	Iterations	Time	Iterations	Time Iterations		Time	Iterations			
				(n,p) = (200, 1000)						
1/3	3.97(0.17)	10(0)	4.10(0.36)	10(0)	4.13(0.45)	10(0)	3.90(0.20)	10(0)			
1/2	4.22(0.24)	10(0)	5.03(0.87)	10(0)	3.98(0.83)	10(0)	4.25(0.37)	10(0)			
2/3	3.93(0.11)	10(0)	4.08(0.83)	10(0)	4.25(0.36)	10(0)	4.21(0.32)	10(0)			
				(n,p) = (200, 2000)						
1/3	7.87(0.47)	10(0)	7.37(0.63)	10(0)	8.04(0.70)	10(0)	7.24(0.20)	10(0)			
1/2	7.91(0.59)	10(0)	8.40(0.53)	10(0)	7.98(0.53)	10(0)	7.25(0.21)	10(0)			
2/3	7.75(0.61)	10(0)	7.03(0.64)	10(0)	8.05(0.35)	10(0)	7.15(0.39)	10(0)			
				$(n,p) = (\cdot$	400, 1000)						
1/3	2.73(0.37)	5(1)	2.03(0.3)	4(1)	2.98(0.41)	5(1)	2.89(0.46)	5(0)			
1/2	2.20(0.21)	4(0)	1.44(0.10)	3(0)	2.91(0.40)	5(1)	2.86(0.46)	5(1)			
2/3	1.98(0.30)	4(1)	1.50(0.22)	3(0)	2.42(0.39)	5(1)	2.58(0.33)	5(1)			
				$(n,p) = (\cdot$	400,2000)						
1/3	4.87(0.67)	5(1)	3.73(0.47)	4(0)	4.87(0.57)	5(1)	6.01(0.98)	5(1)			
1/2	3.69(0.29)	4(0)	3.34(0.55)	3(0)	5.97(1.05)	5(1)	6.03(0.93)	5(1)			
2/3	3.18(0.43)	4(0)	2.34(0.68)	3(0)	4.67(0.68)	5(1)	6.54(1.72)	5(1)			

				1	1		J	· u			1		
						$\Sigma = \Sigma_1$					$\Sigma = \Sigma_2$		
\overline{n}	p	ρ	$oldsymbol{lpha}(\cdot)$	\mathcal{P}_1	\mathcal{P}_2	\mathcal{P}_3	\mathcal{P}_4	\mathcal{P}_a	\mathcal{P}_1	\mathcal{P}_2	\mathcal{P}_3	\mathcal{P}_4	\mathcal{P}_a
300	1000	1/3	\boldsymbol{lpha}_1	0.999	0.998	1	1	0.997	1	1	0.998	0.994	0.992
			$oldsymbol{lpha}_2$	0.999	1	1	1	0.999	1	1	1	1	1
300	1000	1/2	$oldsymbol{lpha}_1$	0.983	0.987	0.987	1	0.958	1	1	0.984	1	0.984
			$oldsymbol{lpha}_2$	1	1	1	1	1	1	1	0.996	1	0.996
300	1000	2/3	$oldsymbol{lpha}_1$	0.925	0.928	0.946	1	0.813	1	1	0.896	0.996	0.894
			$oldsymbol{lpha}_2$	0.995	1	0.996	0.994	0.988	1	0.997	0.976	1	0.973
300	2000	1/3	$oldsymbol{lpha}_1$	1	1	1	1	1	1	1	0.998	0.99	0.988
			$oldsymbol{lpha}_2$	1	1	1	1	1	1	1	1	1	1
300	2000	1/2	$oldsymbol{lpha}_1$	0.974	0.98	0.984	1	0.941	0.998	1	0.955	0.999	0.952
			$oldsymbol{lpha}_2$	0.999	1	1	0.998	0.997	1	1	0.994	1	0.994
300	2000	2/3	$oldsymbol{lpha}_1$	0.898	0.903	0.923	1	0.75	0.998	0.999	0.821	0.994	0.816
			$oldsymbol{lpha}_2$	0.991	1	0.996	0.99	0.979	1	0.99	0.952	1	0.943
500	1000	1/3	$oldsymbol{lpha}_1$	1	1	1	1	1	1	1	1	1	1
			$oldsymbol{lpha}_2$	1	1	1	1	1	1	1	1	1	1
500	1000	1/2	$oldsymbol{lpha}_1$	1	1	1	1	1	1	1	1	1	1
			$oldsymbol{lpha}_2$	1	1	1	1	1	1	1	1	1	1
500	1000	2/3	$oldsymbol{lpha}_1$	0.998	0.998	0.998	1	0.994	1	1	1	1	1
			$oldsymbol{lpha}_2$	1	1	1	1	1	1	1	1	1	1
500	2000	1/3	$oldsymbol{lpha}_1$	1	1	1	1	1	1	1	1	1	1
			$oldsymbol{lpha}_2$	1	1	1	1	1	1	1	1	1	1
500	2000	1/2	$oldsymbol{lpha}_1$	1	1	1	1	1	1	1	1	1	1
			$oldsymbol{lpha}_2$	1	1	1	1	1	1	1	1	1	1
500	2000	2/3	$oldsymbol{lpha}_1$	0.987	0.995	0.998	1	0.980	1	1	0.998	1	0.998
			$oldsymbol{lpha}_2$	1	1	1	1	1	1	1	1	1	1

Table 4: The proportions of \mathcal{P}_j s and \mathcal{P}_a for binary response

Table 5: Computing times (Seconds) and the number of iterations for binary response

		Σ_1			Σ_2					
	\boldsymbol{lpha}_1		α_2		α_1		α_2			
ρ	Time Iterations		Time	Iterations	Time Iterations		Time	Iterations		
				(n,p) = (3	300, 1000)					
1/3	15.65(2.51)	5(1)	13.18(2.37)	4(1)	12.36(1.69)	4(1)	14.52(2.62)	4(0)		
1/2	17.39(2.56)	4(0)	8.17(0.28)	3(0)	14.70(2.39)	4(1)	14.48(2.67)	4(0)		
2/3	15.44(2.39)	4(0)	9.19(1.75)	3(0)	14.55(1.98)	4(1)	16.76(3.19)	4(1)		
				(n,p) = (3	300, 2000)					
1/3	23.63(4.09)	5(1)	19.80(3.31)	4(1)	17.76(3.55)	4(1)	16.93(3.21)	4(1)		
1/2	17.70(1.08)	4(0)	13.54(0.39)	3(0)	22.61(4.13)	5(1)	18.79(3.60)	4(1)		
2/3	16.94(1.94)	4(0)	13.46(0.64)	3(0)	22.24(3.89)	5(1)	21.50(3.56)	4(1)		
				(n,p) = (500, 1000)					
1/3	75.23(11.43)	5(0)	50.36(8.00)	4(0)	55.09(8.95)	5(1)	55.03(7.53)	5(1)		
1/2	64.40(8.98)	4(0)	33.64(3.32)	3(0)	62.36(8.52)	5(1)	56.10(9.03)	5(1)		
2/3	55.52(8.34)	4(0)	31.63(3.18)	3(0)	63.35(8.16)	5(1)	56.07(9.19)	5(1)		
				(n,p) = (500, 2000)					
1/3	112.07(18.07)	5(0)	57.70(4.09)	4(0)	70.14(12.46)	5(1)	71.20(10.52)	5(1)		
1/2	75.85(13.67)	4(0)	49.28(7.43)	3(0)	69.76(11.67)	5(1)	70.23(12.71)	5(1)		
2/3	78.53(11.51)	4(0)	44.31(3.67)	3(0)	79.09(13.66)	5(1)	72.74(11.21)	5(1)		

						$\Sigma = \Sigma_1$					$\Sigma = \Sigma_2$		
\overline{n}	p	ρ	$\boldsymbol{\alpha}(\cdot)$	\mathcal{P}_1	\mathcal{P}_2	\mathcal{P}_3	\mathcal{P}_4	\mathcal{P}_a	\mathcal{P}_1	\mathcal{P}_2	\mathcal{P}_3	\mathcal{P}_4	\mathcal{P}_a
300	1000	1/3	$oldsymbol{lpha}_1$	0.982	0.976	0.978	0.983	0.942	0.998	0.998	0.983	0.989	0.975
			$lpha_2$	0.998	0.999	1	0.997	0.996	1	0.998	0.998	0.998	0.995
300	1000	1/2	$oldsymbol{lpha}_1$	0.945	0.941	0.928	0.989	0.842	0.999	1	0.884	0.994	0.883
			$lpha_2$	0.982	0.988	0.994	0.98	0.95	1	0.981	0.979	0.999	0.968
300	1000	2/3	$oldsymbol{lpha}_1$	0.815	0.848	0.808	0.979	0.554	0.993	0.998	0.622	0.994	0.617
			$oldsymbol{lpha}_2$	0.866	0.917	0.894	0.852	0.626	1	0.825	0.793	0.997	0.703
300	2000	1/3	$oldsymbol{lpha}_1$	0.965	0.966	0.956	0.973	0.895	0.998	1	0.966	0.97	0.955
			$oldsymbol{lpha}_2$	0.987	0.994	0.997	0.989	0.976	1	0.99	0.99	0.999	0.987
300	2000	1/2	$oldsymbol{lpha}_1$	0.897	0.895	0.88	0.994	0.739	0.996	0.997	0.811	0.991	0.806
			$oldsymbol{lpha}_2$	0.962	0.982	0.985	0.964	0.909	0.999	0.95	0.938	0.997	0.913
300	2000	2/3	$oldsymbol{lpha}_1$	0.744	0.743	0.748	0.986	0.421	0.992	0.99	0.489	0.988	0.479
			$oldsymbol{lpha}_2$	0.811	0.879	0.858	0.806	0.534	1	0.694	0.676	0.995	0.54
500	1000	1/3	$oldsymbol{lpha}_1$	1	1	1	1	1	1	1	1	1	1
			$oldsymbol{lpha}_2$	1	1	1	1	1	1	1	1	1	1
500	1000	1/2	$oldsymbol{lpha}_1$	0.999	0.999	1	1	0.998	0.999	1	0.991	1	0.990
			$oldsymbol{lpha}_2$	1	1	1	1	1	1	1	1	1	1
500	1000	2/3	$oldsymbol{lpha}_1$	0.989	0.983	0.991	1	0.965	0.999	1	0.958	1	0.958
			$oldsymbol{lpha}_2$	0.996	1	1	0.993	0.989	1	0.996	0.997	1	0.994
500	2000	1/3	$oldsymbol{lpha}_1$	1	1	1	1	1	1	1	1	1	1
			$oldsymbol{lpha}_2$	1	1	1	1	1	1	1	1	1	1
500	2000	1/2	$oldsymbol{lpha}_1$	0.999	1	0.999	1	0.998	1	1	0.988	1	0.988
			$oldsymbol{lpha}_2$	1	1	1	1	1	1	1	1	1	1
500	2000	2/3	$oldsymbol{lpha}_1$	0.981	0.976	0.972	1	0.933	1	1	0.929	1	0.929
			$oldsymbol{lpha}_2$	0.988	0.995	0.996	0.994	0.974	1	0.987	0.979	1	0.973

Table 6: The proportions of \mathcal{P}_s and \mathcal{P}_a for count response

Table 7: Computing times (Seconds) and the number of iterations for count response

		Σ	C_1	Σ_2				
	α_1	1	α_2		α_1		α_2	
ρ	Time	Iterations	Time	Iterations	Time	Iterations	Time	Iterations
				(n,p) = (3	300, 1000)			
1/3	13.62(2.44)	4(1)	11.10(2.10)	4(1)	16.17(2.40)	5(1)	11.86(2.39)	4(1)
1/2	10.51(2.23)	4(1)	12.61(2.03)	3(1)	12.90(2.46)	5(1)	15.39(2.65)	5(1)
2/3	9.76(0.67)	3(0)	11.15(1.51)	3(0)	12.84(2.46)	5(1)	13.04(2.44)	5(1)
				(n,p) = (3	300, 2000)			
1/3	17.24(3.16)	4(1)	18.50(3.96)	4(1)	22.47(3.79)	5(1)	20.40(3.48)	5(1)
1/2	17.12(3.23)	4(1)	16.64(2.84)	4(1)	20.38(3.67)	5(1)	20.53(3.61)	5(1)
2/3	13.84(0.62)	3(0)	13.67(0.51)	3(0)	19.84(3.73)	5(1)	21.20(3.98)	5(1)
				(n,p) = (500, 1000)			
1/3	56.39(9.94)	4(1)	43.94(6.90)	4(1)	54.58(8.08)	5(1)	63.15(9.99)	5(1)
1/2	43.14(6.40)	4(0)	39.69(6.17)	4(1)	51.78(9.01)	5(1)	52.92(8.86)	5(1)
2/3	47.08(7.45)	4(1)	29.25(1.14)	3(0)	51.12(9.04)	5(1)	52.86(8.80)	5(1)
			·	(n,p) = (500, 2000)			
1/3	77.70(11.08)	4(1)	53.43(10.93)	4(1)	70.14(12.30)	5(1)	71.47(12.31)	5(1)
1/2	61.36(8.73)	4(0)	52.00(11.15)	4(1)	70.80(12.03)	5(1)	74.42(10.20)	5(1)
2/3	50.81(11.06)	4(1)	50.32(8.40)	3(0)	70.83(11.98)	5(1)	76.46(11.58)	6(1)

Table 8: Comparing AIC, BIC and HBIC (mean and sd)

	Laste et comparing file, 210 and fibre (mean and su)										
		Continuous	s response	Binary r	esponse	Count response					
		p=1000 p=2000		p=1000 $p=2000$		p=1000	p=2000				
AIC	Р	0.100	0.060	0.055	0.020	0.420	0.370				
	\mathbf{C}	4(0)	4(0)	4(0.100)	4(0)	4(0)	4(0.141)				
	Ι	10.200(7.366)	9.850(7.262)	11.425(6.889)	13.63(6.030)	1.64(2.242)	2.030(2.901)				
BIC	Р	0.745	0.715	0.760	0.710	0.665	0.570				
	\mathbf{C}	4(0)	4(0)	4(0.571)	4(0)	4(0.262)	4(0.278)				
	Ι	0.305(0.560)	0.325(0.549)	0.300(0.481)	0.220(0.503)	0.530(0.956)	0.720(1.161)				
HBIC	Р	0.970	0.975	0.915	0.710	0.700	0.620				
	С	4(0)	4(0)	3.73(0.954)	4(0)	4(0)	4(0)				
	Ι	0.030(0.171)	0.025(0.157)	0.005(0.171)	0.320(0.509)	0.600(1.143)	0.660(1.002)				