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Abstract: We consider a single-index structure to study heteroscedasticity in re-

gression with high-dimensional predictors. A general class of estimating equations

is introduced. The resulting estimators remain consistent even when the struc-

ture of the variance function is misspecified. The proposed estimators estimate

the conditional variance function asymptotically as well as if the conditional mean

function was given a priori. Numerical studies confirm our theoretical observations

and demonstrate that our proposed estimators have less bias and smaller standard

deviation than the existing estimators.
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1. Introduction

Many scientific studies rely on understanding the local variability of the data,

frequently characterized through the conditional variance in statistical model-

ing. The conditional variance plays an important role in a variety of statistical

applications, such as measuring the volatility of risk in finance (Anderson and

Lund (1997); Xia, Tong, and Li (2002)), monitoring the reliability of nonlinear

prediction (Müller and Stadtmüller (1987); Yao and Tong (1994)), identifying

homoscedastic transformations in regression (Box and Cox (1964); Carroll and

Ruppert (1988)) and so on. Estimation of the conditional variance function is

an important problem in statistics.

Let Y ∈ R be the response variable and x = (X1, . . . , Xp)
T ∈ Rp be the

associated predictor vector. In this paper we study the conditional variance

function of Y given x, denoted var(Y | x). We write E(Y | x) as the conditional

mean function and ε = Y − E(Y | x) as the random error. Then we have

var(Y | x) = E(ε2 | x). Since ε is not observable, it is natural to replace the

error with the residual ε̂ = Y−Ê(Y | x), where Ê(Y | x) is an arbitrary consistent

estimate of the conditional mean function. It is of interest to quantify the effect of

this replacement on estimating the conditional variance function. This problem

first received much attention when the predictor is univariate, p = 1. See, for
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example, Hall and Carroll (1989), Wang et al. (2008), and references therein.

Cai, Levine, and Wang (2009) generalized the results of Wang et al. (2008) to

the case of multivariate x. In their generalization, however, the nonparametric

kernel regression was applied directly to estimate the multivariate regression

function, which may not be effective due to the “curse of dimensionality”. In

regressions with univariate predictor and response, Ruppert et al. (1997) and

Fan and Yao (1998) applied local linear regression to the squared residuals and

demonstrated that such nonparametric estimate performs asymptotically as well

as if the conditional mean were given a priori. Song and Yang (2009) derived

asymptotically exact and conservative confidence bands for the heteroscedastic

variance functions. Yin et al. (2010) extended the results of Fan and Yao (1998)

to the case of multivariate response.

To model the conditional variance function when p is fairly large, we assume

throughout that there exists a smooth function σ2(·) and a p× 1 vector β0 such

that

var(Y | x) = σ2(βT
0 x). (1.1)

With an unspecified link function σ2(·) and a univariate index βT
0 x, (1.1) is

both flexible and interpretable under the single-index structure. It provides a

compromise between parametric models which are easily interpretable yet often

too restrictive, and fully nonparametric models that are flexible but suffer from

the “curse of dimensionality”. For ease of presentation we assume that, for some

unknown function ℓ(·) and a p× 1 vector α0, the conditional mean function also

admits the single-index structure

E(Y | x) = ℓ(αT
0 x). (1.2)

The assumption of model (1.2) is not essential and more general forms of the

mean function may be assumed.

In this paper we propose a general class of estimating equations to estimate

β0. By correctly specifying E(x | βT
0 x), the estimator of β0 is consistent even

when the structure of the variance function σ2(·) is misspecified. On the other

hand, if the variance function σ2(·) is correctly specified and estimated consis-

tently, our proposed estimator of β0 is consistent without correctly specifying

E(x | βT
0 x).

The estimate of β0 from the estimating equations possesses an adaptive

property: the proposed procedure estimates the conditional variance function as

efficiently, asymptotically, as if the conditional mean were given a priori. This

is achieved by replacing the error ε = Y − E(Y | x) in the estimating equation

with its corresponding residual ε̂ = Y − Ê(Y | x).
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This paper is organized in the following way. In Section 2 we present the

methodology and study its properties under both the population and the sample

levels. In Section 3 we examine the finite sample performance of the proposed

procedure through simulations and an application to a data set. This paper

concludes with a brief discussion in Section 4. All technicalities are given in the

Appendix.

2. A New Procedure and Its Theoretical Properties

2.1. A general class of estimating equations

Consider the estimating equation

E[{ε2 − σ2(βT
0 x)}{σ2(βT

0 x)}′x] = 0, (2.1)

where ε = Y − E(Y | x), and {σ2(·)}′ stands for the first order derivative of

σ2(·). Here (2.1) corresponds to the classical nonlinear least squares estimation

of Ichimura (1993) and Härdle, Hall, and Ichimura (1993). A limitation of (2.1)

is that it requires correct specification of σ2(·) to obtain a consistent estimate for

β0, and this may be troublesome in practice. To address this issue we propose a

new class of estimating equations,

E
[{

ε2 − σ̃2(βT
0 x)

}{
x− Ẽ

(
x | βT

0 x
)}]

= 0, (2.2)

where σ̃2(βT
0 x) and Ẽ

(
x | βT

0 x
)
may be different from σ2(βT

0 x) and E
(
x | βT

0 x
)
.

When σ̃2(βT
0 x) = σ2(βT

0 x) and Ẽ
(
x | βT

0 x
)
= E

(
x | βT

0 x
)
, (2.2) has the form

E
[{

ε2 − σ2(βT
0 x)

}{
x− E

(
x | βT

0 x
)}]

= 0. (2.3)

It is not difficult to verify that (2.3) produces a consistent estimate of β0. In

other words, β0 is a solution to E
[{

ε2 − σ2(βTx)
}{

x− E
(
x | βTx

)}]
= 0. An

important virtue of (2.2) is that, as long as one of the functions σ̃2(βT
0 x) and

Ẽ
(
x | βT

0 x
)
is correctly specified, (2.2) yields a consistent estimate of β0. In

particular, without knowing the exact form of σ2(·), suppose we specify it as

σ̃2(·), which may be different from σ2(·), and impose the working estimating

equation

E
[{

ε2 − σ̃2(βT
0 x)

}{
x− E

(
x | βT

0 x
)}]

= 0. (2.4)

Invoking a conditional expectation, (2.4) is equivalent to

E
(
E
[{

ε2 − σ̃2(βT
0 x)

}{
x− E

(
x | βT

0 x
)}

| x
])

= 0.
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To verify that this yields a consistent estimate of the true β0 at the population

level, we recall that E
(
ε2 | x

)
= σ2(βT

0 x) under (1.1). Then the left hand side

of (2.4) can be further reduced as

E
[
E
{
ε2 − σ̃2(βT

0 x) | x
}{

x− E
(
x | βT

0 x
)}]

= E
[
E
{
ε2 − σ̃2(βT

0 x) | βT
0 x

}{
x− E

(
x | βT

0 x
)}]

= E
[{
ε2 − σ̃2(βT

0 x)
}
E
{
x− E

(
x | βT

0 x
)
| βT

0 x
}]

,

where the last term is obviously 0, indicating that (2.4) is able to produce a

consistent estimator of β0. This derivation provides the motivation for (2.2), as

it continues to yield a consistent estimate of β0 even if σ2(·) is misspecified. As

a special case, let σ̃2(βT
0 x) = 0 in (2.4) and get

E
[
ε2

{
x− E(x | βT

0 x)
}]

= 0, (2.5)

which is similar to the estimating equation proposed by Li and Dong (2009) to

recover the central solution space. In their context they utilize Y instead of ε2

to estimate the mean function. We generalize the idea of the central solution

space method to estimate the variance function. When x satisfies the linearity

condition (Li (1991)), (E(x | βT
0 x) is a linear function of x), then β0 must

be proportional to {var(x)}−1cov(x, ε2). This property dramatically simplifies

solving (2.5) at the sample level. Yet, unlike the response variable Y , the error

term ε is not observable. This motivates us to examine the effect of estimating

the mean function to obtain the residuals on estimating the variance function.

We study this issue in the next section. Aside from this, we have seen that (2.5)

is a specific member of the general class of estimating equations at (2.2).

On the other hand, correct specification of E(x | βT
0 x) may be challenging in

some situations. Even if all components in E(x | βT
0 x) can be correctly specified,

calculating E(x | βT
0 x) is rather intensive when x is high dimensional. In order

to simplify the calculation, suppose we estimate E(x | βT
0 x) by Ẽ(x | βT

0 x).

Then (2.2) becomes

E
[{

ε2 − σ2(βT
0 x)

}{
x− Ẽ(x | βT

0 x)
}]

= 0, (2.6)

noting that E
(
ε2 | x

)
= σ2(βT

0 x) and conditioning on x. Thus (2.2) continues to

yield a consistent estimate of β0 even if E(x | βT
0 x) is misspecified. For example,

we can set Ẽ(x | βT
0 x) = 0 and then (2.6) becomes

E
[{

ε2 − σ2(βT
0 x)

}
x
]
= 0. (2.7)

We remark here that (2.5) and (2.7) are equivalent at the population level by

noting that E
{
ε2E

(
x | βT

0 x
)}

= E
{
E
(
ε2 | βT

0 x
)
x
}

= E
{
σ2(βT

0 x)x
}

under

(1.1).
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We have shown that the estimating equation at (2.2) has a desirable robust-

ness property: as long as either σ̃2(·) or Ẽ(x | βT
0 x) is correctly specified, the

estimator based on the sample version of (2.2) is consistent. Both parametric

and nonparametric methods could be used to model σ̃2(·) or Ẽ(x | βT
0 x). For

example, Ẽ(x | βT
0 x) is typically assumed to be a linear function of βT

0 x in

the dimension reduction literature (Li (1991)). We propose to estimate σ̃2(·)
and Ẽ(x | βT

0 x) via kernel regression. The theoretical properties of the sample

estimates based on kernel regression are investigated in the next section.

2.2. Asymptotic properties

Given independent and identically distributed {(xi, Yi), i = 1, . . . , n}, we dis-
cuss sample versions of the proposed estimating equations and their asymptotic

properties.

Ideally, one may estimate β0 by solving for β̂ that satisfies

n−1/2
n∑

i=1

{ε2i − σ̂2(β̂
T
xi)}{xi − Ê(xi | β̂

T
xi)} = 0, (2.8)

which is the sample counterpart of (2.3). In (2.8), the quantities σ̂2(β̂
T
xi) and

Ê(xi | β̂
T
xi) are the consistent estimators of σ2(β̂

T
xi) and E(xi | β̂

T
xi), respec-

tively, and can be obtained through the classical kernel regression method. In

practice, we have to replace the unobservable error εi with the residual ε̂i. To

guarantee the consistency of β̂, we need consistent estimation of εi, indicating

that we have to estimate E(Y | x) consistently. Under (1.2), E(Y | x) = ℓ(αT
0 x),

we estimate α0 by solving for α̂ that satisfies

n−1/2
n∑

i=1

{Yi − ℓ̂(α̂Txi)}{xi − Ê(xi | α̂Txi)} = 0, (2.9)

which is parallel to (2.8) with

Ê(xi | α̂Txi)=

∑n
j=1Kh(α̂

Txj−α̂Txi)xj∑n
j=1Kh(α̂Txj − α̂Txi)

, ℓ̂(α̂Txi)=

∑n
j=1Kh1(α̂

Txj−α̂Txi)Yj∑n
j=1Kh1(α̂

Txj − α̂Txi)
,

In this Kh(·) = K(./h)/h is the kernel function. h and h1 are the bandwidths.

Next we calculate the residual ε̂i = Yi − ℓ̂(α̂Txi), and get our final estimate

of β0 by solving

n−1/2
n∑

i=1

{ε̂2i − σ̂2(β̂
T
xi)}{xi − Ê(xi | β̂

T
xi)} = 0. (2.10)
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In (2.10) we estimate E(xi | β̂
T
xi) and σ2(β̂

T
xi) as

Ê(xi | β̂
T
xi)=

∑n
j=1Kh(β̂

T
xj−β̂

T
xi)xj∑n

j=1Kh(β̂
T
xj − β̂

T
xi)

, σ̂2(β̂
T
xi)=

∑n
j=1Kh2(β̂

T
xj−β̂

T
xi)ε̂

2
j∑n

j=1Kh2(β̂
T
xj − β̂

T
xi)

.

To summarize, we implement the following algorithm to estimate β0.

1. Solve (2.9) to obtain α̂ through the following Newton-Raphson algorithm.

(a) Start with an initial value α(0). In our implementation, we choose α(0) ={∑n
i=1(xi−x)(xi−x)

}−1{∑n
i=1(xi−x)(Yi−Y )

}
, where x = n−1

∑n
i=1 xi

and Y = n−1
∑n

i=1 Yi.

(b) Write J(α) = n−1/2
∑n

i=1{Yi− ℓ̂(αTxi)}{xi− Ê(xi | αTxi)} and J ′(α) =

−n−1/2
∑n

i=1{ℓ̂(αTxi)}′{xi−Ê(xi | αTxi)}xT
i . The derivative {ℓ̂(αTxi)}′

= ∂{ℓ̂(αTxi)}/∂(αTxi) is taken directly from the corresponding kernel

estimator. Update α(k) with

α(k+1) = α(k) −
{
J ′(α(k))

}−1{
J(α(k))

}
. (2.11)

In case the matrix J ′(α(k)) is singular or nearly so, we adopt a ridge

regression approach using (2.11) with J ′(α(k)) replaced by J ′
r(α

(k)) =

J ′(α(k))+λnIp×p for some positive ridge parameter λn. Here Ip×p denotes

a p× p identity matrix.

(c) Iterate (2.11) until α(k+1) fails to change. Denote the resultant estimate

by α̂.

2. Obtain ℓ̂(α̂Txi) by using kernel regression of Yi onto (α̂Txi), for i = 1, . . . , n.

3. Solve (2.10) to obtain β̂, where ε̂i = Yi − ℓ̂(α̂Txi).

(a) Start with an initial value β(0). In our implementation, we choose β(0) ={∑n
i=1(xi − x)(xi − x)

}−1{∑n
i=1(xi − x)ε̂2i

}
.

(b) Write I(β) = n−1/2
∑n

i=1{ε̂2i − σ̂2(βTxi)}{xi− Ê(xi | βTxi)} and I ′(β) =

−n−1/2
∑n

i=1{σ̂2(βTxi)}′{xi − Ê(xi | βTxi)}xT
i , where the derivative

{σ̂2(βTxi)}′ = ∂{σ̂2(βTxi)}/∂(βTxi) is taken from the kernel estimator

σ̂2(βTxi).

Update β(k) with

β(k+1) = β(k) −
{
I ′(β(k)) + λnIp×p

}−1{
I(β(k))

}
. (2.12)

(c) Iterate (2.12) until β(k+1) fails to change. Denote the resultant estimate

by β̂.

4. Obtain σ̂2(β̂
T
xi) by using kernel regression of ε̂2i onto (β̂

T
xi), for i = 1, . . . , n.
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One question arises naturally: how to quantify the differences between the

estimators obtained from (2.8) and (2.10)? This is answered by the following.

Theorem 1. Suppose the conditions (C1)−(C5) in the Appendix are satisfied.

Let

Q = E
[
A(x)

{
σ2
0(β

T
0 x)

}′
xT

]
and V = E

{
var(ε2 | x)A(x)AT(x)

}
,

where A(x) = x − E(x | βT
0 x). Then n1/2V−1/2 Q

(
β̂ − β0

)
converges in dis-

tribution to the standard multivariate normal distribution as n → ∞.

Theorem 1 provides the asymptotic normality of β̂ obtained from Step 3

in our proposed algorithm, which uses the residual ε̂i and relies on (2.10). As

detailed in the proof in the Appendix, we obtain exactly the same asymptotic

distribution of β̂ based on (2.8) with known error εi. This means our procedure

performs as well as the oracle procedure in terms of estimating β0, namely,

without knowing the conditional mean, we can estimate the conditional variance

function asymptotically as well as if the conditional mean was given a priori.

With a consistent estimator β̂, we estimate σ2(·) via kernel regression. The

next theorem states the consistency of σ̂2(·) obtained from Step 4 in our proposed

algorithm.

Theorem 2. Suppose the conditions (C1)−(C5) in the Appendix are satisfied.

Let

bias = h22µ2

[{
σ2(βT

0 x)
}′′

2
+

{
σ2(βT

0 x)
}′ {

f(βT
0 x)

}′

f(βT
0 x)

]
,

where µ2 =
∫ 1
−1 u

2K(u)du,
{
σ2(·)

}′
, {f(·)}′ and

{
σ2(·)

}′′
denote the first and sec-

ond order derivatives, respectively. Then (nh2)
1/2

{
σ̂2(β̂

T
x)− σ2(βT

0 x)− bias
}

converges in distribution to normal distribution with mean zero and variance

var(ε2 | βT
0 x)/f(β

T
0 x).

Because β̂ has a faster convergence rate than the nonparametric regression,

the above result is not surprising. Theorem 2 implies that we can estimate σ2(·)
based on β̂

T
x as efficiently as if βT

0 x was known a priori. This extends the

results in Fan and Yao (1998), as we obtain the adaptive property when x is

high-dimensional and the link function is an unknown smoothing function.

Remark 1. In this section, we describe how to estimate β0 from the estimating

equation (2.10) and establish the adaptive property for β̂ and σ̂2(β̂
T
x) in an

asymptotic sense. In practical implementation, one may choose the bandwidth
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for the proposed procedure by using a cross-validation procedure. The estimating

equation (2.10) corresponds to (2.3) at the population level. Similarly, one can

derives an estimate for β0 using the sample version of (2.5) or (2.7). However, it

is necessary to undersmooth Ê(x|βT
0 x) in (2.5), or σ̂2(βT

0 x) in (2.7), in order for

the resulting estimate to achieve the adaptive properties. We skip the details.

3. Numerical Studies

3.1. Simulations

In this section, we report on simulation studies to compare the performance
of the estimation procedures discussed in Section 2.1. Specifically, we consider

∑n
i=1{Yi − ℓ̂(α̂Txi)}{ℓ̂(α̂Txi)}′xi = 0,∑n
i=1{ε̂2i − σ̂2(β̂

T
xi)}{σ̂2(β̂

T
xi)}′xi = 0.

(3.1)

Solving (3.1) yields the classical nonlinear least squares estimation proposed by
Härdle, Hall, and Ichimura (1993), and it serves as a benchmark for our compar-
isons.

Estimating equations for the sample level of (2.7) are
∑n

i=1{Yi − ℓ̂(α̂Txi)}xi = 0,∑n
i=1{ε̂2i − σ̂2(β̂

T
xi)}xi = 0.

(3.2)

We recall that the quantity Ẽ(x | βT
0 x) is misspecified to be 0 in (2.7). We

have seen in Section 2.1 that the estimator of β0 obtained from (3.2) remains
consistent if ε̂2 and σ̂2(·) are consistent. The estimator based on (3.2) is included
to demonstrate this robustness property.

The sample version of the estimating equation (2.3) is
∑n

i=1{Yi − ℓ̂(α̂Txi)}{xi − Ê(xi | α̂Txi)} = 0,∑n
i=1{ε̂2i − σ̂2(β̂

T
xi)}{xi − Ê(xi | β̂

T
xi)} = 0.

(3.3)

In equations (3.1), (3.2), and (3.3), ε̂i = Yi− ℓ̂(α̂Txi). As in Section 2.2, we esti-
mate ℓ(αTx), σ2(βTx), E(x | αTx), and E(x | βTx) through the corresponding
kernel estimates. Both σ2(βTx) and E(x | βTx) are estimated consistently in
(3.3). The Epanechnikov kernel is used in our numerical study and the band-
widths are selected via cross-validation. We remark here that, our estimating
procedure is not very sensitive to the choice of the bandwidth, which confirms
the theoretical investigations in Theorem 1 that the asymptotic normality of β̂
holds true for a wide range of bandwidth.

In our simulation, we used two schemes to generate x.
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Table 1. Simulation results for Case 1. The oracle estimates use the true
error term ε. All numbers reported are multiplied by 100.

method
mean estimate variance estimate oracle estimation

α̂1 α̂2 α̂3 α̂4 β̂1 β̂2 β̂8 β̂1 β̂2 β̂8

(a): ℓ(αT
0 x) = 5

(
αT

0 x
)

(3.1) bias -0.04 0.03 0.06 -0.06 7.68 0.07 -13.56 6.04 -0.19 -14.22
std 0.92 1.19 0.99 1.14 17.14 19.84 11.89 16.78 19.61 12.14

(3.2) bias -0.04 0.04 0.05 -0.06 2.62 0.62 -4.16 1.46 0.07 -4.49
std 0.91 1.18 0.98 1.13 9.67 11.45 5.88 9.06 11.14 5.70

(3.3) bias -0.05 0.04 0.05 -0.06 2.48 0.59 -4.04 1.35 0.01 -4.37
std 0.91 1.18 0.98 1.13 9.35 11.19 5.30 9.01 10.96 5.23

(b): ℓ(αT
0 x) = 2 exp

(
αT

0 x
)

(3.1) bias -0.56 -0.16 0.58 -0.49 7.65 -0.29 -13.59 6.04 -0.19 -14.22
std 3.71 4.82 4.05 4.63 16.84 19.77 11.99 16.78 19.61 12.14

(3.2) bias -0.79 -0.11 0.61 -0.45 2.91 0.81 -4.02 1.46 0.07 -4.49
std 4.06 5.25 4.42 5.07 9.52 11.43 5.59 9.06 11.14 5.70

(3.3) bias -0.79 -0.11 0.60 -0.46 2.84 0.79 -3.97 1.35 0.01 -4.37
std 4.08 5.26 4.41 5.07 9.44 11.25 5.70 9.01 10.96 5.23

Case 1: The predictors x were drawn from a normal population with mean zero

and variance-covariance matrix (σij)8×8, where σij = 0.5|i−j|.

Case 2: We generated X1 as uniform U(0, 121/2), X2 from a binomial distribution

with success probability 0.5, and X3 from a Poisson distribution with

parameter 2. We kept (X4, . . . , X8)
T generated from Case 1.

Conditioning on x, Y was generated as normal with the mean functions

(a) ℓ(αT
0 x) = 5

(
αT

0 x
)
,

(b) ℓ(αT
0 x) = 2 exp

(
αT

0 x
)
,

where α0 = (0.8, 0.4,−0.4, 0.2, 0, 0, 0, 0)T in (a) and (b) and the variance function

σ2(βT
0 x) = 0.25

(
βT
0 x+ 2

)2
with β0 = (−0.45, 0, . . . , 0, 0.9)T.

Performances of estimating α0 and β0. For the estimation accuracy of α0

and β0, simulations were repeated 1,000 times with sample size n = 600. The bias

(“bias”) and the standard deviation (“std”) of the estimates of typical elements

of α0 and β0 are reported in Tables 1 and 2 for Cases 1 and 2, respectively.

The estimating equations (3.1), (3.2), and (3.3) have similar performances

for estimating α̂ in terms of both the bias and the standard deviation. The es-

timating equations (3.3) perform the best for estimating β0, and (3.2) perform

only slightly worse, confirming the robustness property of (2.2). The estimat-

ing equations (3.1) have the largest biases and standard deviations; this may be
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Table 2. Simulation results for Case 2. The oracle estimates use the true
error term ε. All numbers reported are multiplied by 100.

method
mean estimate variance estimate oracle estimation

α̂1 α̂2 α̂3 α̂4 β̂1 β̂2 β̂8 β̂1 β̂2 β̂8

(a): ℓ(αT
0 x) = 5

(
αT

0 x
)

(3.1) bias -0.02 0.00 0.01 -0.03 5.98 1.65 -13.35 5.68 1.27 -13.74
std 0.49 1.09 0.16 0.72 15.56 28.91 12.50 16.10 29.08 12.87

(3.2) bias -0.02 -0.01 0.00 -0.03 -0.05 -2.40 -5.39 -0.45 -3.07 -5.33
std 0.50 1.12 0.42 0.72 8.69 17.05 6.73 7.95 16.86 6.13

(3.3) bias -0.02 -0.00 0.01 -0.03 1.86 0.26 -3.75 1.66 -0.44 -3.67
std 0.50 1.12 0.42 0.73 7.61 16.64 4.83 7.41 16.36 4.90

(b): ℓ(αT
0 x) = 2 exp

(
αT

0 x
)

(3.1) bias 1.07 1.42 4.28 -0.91 5.42 2.25 -13.99 5.68 1.27 -13.74
std 2.08 4.06 2.89 2.50 16.17 28.87 13.07 16.10 29.08 12.87

(3.2) bias -0.86 -1.43 -1.69 0.17 0.21 -2.63 -5.43 -0.45 -3.07 -5.33
std 2.24 5.02 2.23 3.21 9.03 17.52 7.03 7.95 16.86 6.13

(3.3) bias -0.39 -0.21 0.17 -0.18 2.02 0.36 -3.66 1.66 -0.44 -3.67
std 2.22 4.89 1.99 3.15 7.46 16.73 4.90 7.41 16.36 4.90

Table 3. Simulation results of the average squared errors (ASE). All numbers
reported are multiplied by 100.

model method
Case 1 Case 2

ASE(α̂) ASE(β̂) ASE(α̂) ASE(β̂)
(3.1) 3.83 98.56 1.84 41.34

(a) (3.2) 3.83 43.64 1.94 18.47
(3.3) 3.84 43.24 1.94 17.89
(3.1) 4.30 96.86 3.05 42.23

(b) (3.2) 4.25 45.10 2.39 18.59
(3.3) 4.25 44.35 2.21 18.26

explained by the fact that estimation of {ℓ(·)}′ and {σ2(·)}′ are involved. From

Tables 1 and 2, all three procedures are close to their corresponding oracle es-

timates, which adopt the true errors instead of the residuals. This serves to

confirm the adaptive property of the proposed estimators.

Performances of estimating ℓ(·) and σ2(·). We take the average squared

errors criteria

ASE(α̂) = n−1
n∑

i=1

{
ℓ̂(α̂Txi)− ℓ(αT

0 xi)
}2

,

ASE(β̂) = n−1
n∑

i=1

{
σ̂2(β̂

T
xi)− σ2(βT

0 xi)
}2

.
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The results are reported in Table 3. The estimating equations (3.2) and (3.3)

offer similar results, and both are superior to the results based on (3.1).

3.2. An application

We consider the horse mussels data collected in the Malborough Sounds at

the Northeast of New Zealands South Island (Camden (1989)). The response

variable Y is the shell mass, with three quantitative predictors as related charac-

teristics of mussel shells: the shell length X1, the shell height X2, and the shell

width X3, all in mm. The sample size of this data set is 201. All predictors in

this analysis are standardized marginally to have zero mean and unit variance.

We only report the results obtained from (3.3), as similar results are obtained

from (3.1) and (3.2). By assuming (1.2), we estimate α0 by the first equation of

(3.3), and find α̂ = (0.3615, 0.4243, 0.8302)T. Based on {(α̂Txi, Yi), i = 1, . . . , n},
we estimate ℓ(αT

0 x) by kernel regression. The estimated regression function

and its point-wise prediction interval are plotted in Figure 1(A). The prediction

interval at the 95% level is calculated by assuming tentatively that the variance

function is a constant. We can clearly see that the empirical converge probability

is very poor, particularly when α̂Tx is large, only 63 among 201 points lie within

this prediction region. Homoscedasticity is not a reasonable assumption for this

data set.

Next we solve the second of the estimating equations (3.3) and find β̂ =

(−0.3792, 0.3724, 0.8471)T. The variance function is then estimated by kernel re-

gression based on data points {(β̂
T
xi, ε̂

2
i ), i = 1, . . . , n}. The estimated variance

function is plotted in Figure 1(B), which does not seem to be constant. Tak-

ing into account the heteroscedasticity, we report the 95% prediction interval of

ℓ̂(β̂
T
x) in Figure 1(C). We can see that, around 94% of the sample (189 points)

is covered by this prediction interval.

It is of practical interest to examine the adaptive property of our proposal by

using the bootstrap method. Based on the original sample, we obtained the esti-

mates of the index parameters α̂ and β̂ and the link function ℓ̂(·). We then boot-

strapped the original data 1,000 times. Three quantities can be obtained from the

bootstrap sample: α̂∗ denotes the estimator of α0 based on the bootstrap sample

(x∗
i , Y

∗
i ); β̂

∗
denotes the estimator of β0 based on {x∗

i , Y
∗
i − ℓ̂∗(x∗

i
Tα̂∗)}, and β̂

∗
o

denotes the estimator of β0 based on {x∗
i , Y

∗
i −ℓ̂(x∗

i
Tα̂)}. We remark here that β̂

∗
o

differs from β̂
∗
in that the former used the “true error” term because it adopted

α̂ and ℓ̂(·), estimated from the original data, while the latter used the residuals

calculated from the bootstrap sample. The third plot in Figure 1(D) gives the

boxplot of the absolute values of correlation coefficients corr(xTβ̂
∗
,xTβ̂0). It

implies that β̂
∗
behaves very similarly to β̂

∗
0 because the correlation coefficients
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Figure 1. Analysis of the Horse Mussel Data. The dashed line in (A) is the

kernel estimate ℓ̂(α̂Tx). The dot-dash lines are the 95% pointwise confidence
intervals obtained under the homoscedasticity assumption. The dashed line

in (B) is the kernel estimate σ̂2(β̂
T
x). The dashed line in (C) is the ker-

nel estimate ℓ̂(α̂Tx). The dot-dash lines are the 95% pointwise confidence
intervals obtained under the heteroscedasticity assumption. (D) depicts the

boxplots of corr(xTα̂∗,xTα̂), corr(xTβ̂
∗
,xTβ̂), and corr(xTβ̂

∗
,xTβ̂0), as

calculated from the bootstrap samples.

are all very large. The first and second plots in Figure 1(D) show the respective

boxplots of the absolute value of the correlation coefficients corr(xTα̂∗,xTα̂) and

corr(xTβ̂
∗
,xTβ̂). It can be seen that α̂∗ performs much more stably than β̂

∗
and

β̂
∗
0, indicating that estimating the conditional variance function is more difficult

than estimating the conditional mean function.

4. Discussion

Estimation of the conditional heteroscedasticity remains an important and

open problem in the literature when the dimension of predictors is very large

(Antoniadis, Grégoire, and Mckeague (2004)). Based on a single-index structure,



SINGLE-INDEX MODELING FOR CONDITIONAL HETEROSCEDASTICITY 13

this paper offers a general class of estimating equations to estimate the condi-

tional heteroscedasticity. The proposed framework allows for flexibility when the

structure of the conditional variance function is unknown. The resulting estima-

tor enjoys an adaptive property in that it performs as well as if the true mean

function was given. For ease of illustration, we assume that both the conditional

mean and the conditional variance functions are of the single-index structure.

Extension of the proposed methodology to the multi-index conditional mean and

conditional variance models warrants future investigation. As pointed out by an

anonymous referee, the model considered for ε is of the form ε = σ(βT
0 x)ϵ. Thus,

one can estimate β0 by considering |ε|α = σα(βT
0 x)E|ϵ|α + ξ for any α > 0,

where ξ = σα(βT
0 x)(|ϵ|α − E|ϵ|α). The model used in this paper corresponds to

α = 2. Mercurio and Spokony (2004) discussed how to determine α, and sug-

gested α = 1/2 in general. It may be of interest to consider other α than α = 2.

This is beyond the scope of this paper.
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Appendix: Technical Conditions and Proofs

Appendix A: Some technical conditions

(C1) The density functions of (αT
0 x) and (βT

0 x), denoted by fα0(α
T
0 x) and

fβ0
(βT

0 x), are continuous and bounded from zero and above for all x ∈ Rp,

and have locally Lipschitz second derivatives.

(C2) The functions ℓ(αT
0 x), σ2(βT

0 x), ℓ(αT
0 x)fα0(α

T
0 x), σ2(βT

0 x)fβ0
(βT

0 x),

E(x | αT
0 x)fα0(α

T
0 x), and E(x | βT

0 x)fβ0
(βT

0 x) are continuous and

bounded from above for all x ∈ Rp, and their third derivatives are locally

Lipschitz.

(C3) The symmetric kernel functionK(·) is twice continuously differentiable with

support [-1,1], and is Lipschitz continuous.
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(C4) The bandwidths h, h1, and h2 satisfy nh4 → ∞ and nh8 → 0, nh4i → ∞
and nh8i → 0 for i = 1 and 2.

(C5) E(Y 4) < ∞ and E(X4
i ) < ∞ for i = 1, . . . , p. In addition, the conditional

variance of Y given x is bounded away from 0 and from above.

Appendix B: Proofs of Theorems 1 and 2

Proof of Theorem 1. With regard to ℓ̂(α̂Tx), σ̂2(β̂
T
x), and Ê(x | β̂

T
x),

we first quantify the extent to which these functions can approximate their

respective true values. We take ℓ̂(α̂Tx) as an example. Note that

ℓ̂(α̂Tx)− ℓ(αT
0 x) =

{
ℓ̂(αTx)− ℓ(αT

0 x)
}
+

{
ℓ̂(α̂Tx)− ℓ̂(αT

0 x)
}
.

The first term in the right hand side can be dealt with using standard non-

parametric regression theory. Therefore, it remains to quantify the difference

ℓ̂(α̂Tx)− ℓ̂(αT
0 x). Let C = {α̃ : ∥α̃− α0∥ ≤ Cn−1/2}. Recall that Li, Zhu, and

Zhu (2011, Lemma 1) proved that, if nh41 → ∞,

sup
x∈Rp

sup
C

∣∣∣ {ℓ̂(α̃Tx)− ℓ̂(αT
0 x)

}
− E

{
ℓ̂(α̃Tx)− ℓ̂(αT

0 x)
} ∣∣∣ = Op

{
log n

nh21

}
.

By invoking the symmetry of the kernel function and the condition that the third

derivative of ℓ(·)f(·) is local Lipschitz, and using similar arguments as those in

proving Lemma 3.3 of Zhu and Fang (1996), we can show that

E
{
ℓ̂(αT

0 x)
}
− ℓ(αT

0 x)− µ2h
2
1

{
ℓ′′(αT

0 x) +
ℓ′(αT

0 x)f
′(αT

0 x)

f(αT
0 x)

}
= O(h4),

where µ2 =
∫ 1
−1 u

2K(u)du. A similar result also holds when α0 is replaced by α̃.

By the Mean Value Theorem, it follows that

sup
C

|ℓ′′(α̃Tx)− ℓ′′(αT
0 x)|h21µ2 = Op

(
h21
n1/2

)
= O(h41),

since nh41 → ∞. The above arguments imply that, for any fixed x ∈ Rp and

nh81 → 0,

ℓ̂(αT
0 x)− ℓ̂(α̃Tx) = ℓ′(αTx)xT (α0 − α̃) + op(n

−1/2). (B.1)

Following similar arguments, we can obtain that

σ̂2
0(β

T
0 x)− σ̂2

0(β̃
T
x) =

{
σ2
0(β

T
0 x)

}′
xT

(
β0 − β̃

)
+ op(n

−1/2),

and
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Ê(x | βT
0 x)− Ê(x | β̃

T
x) =

{
E(x | βT

0 x)
}′

xT
(
β0 − β̃

)
+ op(n

−1/2). (B.2)

(B.1) and (B.2) are used repetitively in subsequent derivations. We discuss the

consistency of β̂ first. Let

I(β) = E
{
ε2 − σ2(βTx)

}{
x− E(x | βTx)

}
,

Î(β) = n−1
n∑

i=1

E
{
ε̂2i − σ̂2(βTxi)

}{
xi − Ê(xi | βTxi)

}
.

Let U(β0) be any open set that includes β0. To prove the consistency of β̂, we

assume that infβ∈Θ\U(β0)
| I(β) |≥ δ for some positive constant δ. It suffices to

show that

Pr
{

inf
β∈Θ\U(β0)

| Î(β) |≤ δ

2

}
→ 0. (B.3)

The condition infβ∈Θ\U(β0)
| I(β) |≥ δ implies that

Pr
{

inf
β∈Θ\U(β0)

| Î(β) |≤ δ

2

}
≤ Pr

{
inf

β∈Θ\U(β0)
| Î(β)− I(β) |≥ δ

2

}
.

Therefore, it suffices to show that, for any fixed δ,

Pr
{
sup
β∈Θ

| Î(β)− I(β) |≥ δ

2

}
→ 0.

Recall the definition of Î(β) and I(β), and let Î(β)− I(β)
def
=

∑6
i=1 I1,i, where

I1,1 = n−1
n∑

i=1

{
ε2i − σ2(βTxi)

}{
xi − E(xi | βTxi)

}
− I(β),

I1,2 = n−1
n∑

i=1

{
ε̂2i − ε2i

}{
xi − E(xi | βTxi)

}
,

I1,3 = n−1
n∑

i=1

{
σ2(βTxi)− σ̂2(βTxi)

}{
xi − E(xi | βTxi)

}
,

I1,4 = n−1
n∑

i=1

{
ε2i − σ2(βTxi)

}{
E(xi | βTxi)− Ê(xi | βTxi)

}
,

I1,5 = n−1
n∑

i=1

{
ε̂2i − ε2i

}{
E(xi | βTxi)− Ê(xi | βTxi)

}
,

I1,6 = n−1
n∑

i=1

{
σ2(βTxi)− σ̂2(βTxi)

}{
E(xi | βTxi)− Ê(xi | βTxi)

}
.



16 LIPING ZHU, YUEXIAO DONG AND RUNZE LI

We note that I1,1 is an average of independent and identically distributed

random variables with mean zero. The classical theory of empirical process shows

that supβ∈Θ | I1,1 |= op(log n/n
1/2) almost surely (Pollard (1984, Thm. 2.37)).

Write

I1,2 = 2n−1
n∑

i=1

[{
ℓ(αT

0 xi)− ℓ̂(α̂Txi)
}
εi
{
xi − E(xi | βTxi)

}]
+n−1

n∑
i=1

[{
ℓ(αT

0 xi)− ℓ̂(α̂Txi)
}2 {

xi − E(xi | βTxi)
}]

= 2I1,2,1 + I1,2,2.

We first prove that supβ∈Θ |I1,2,1| = op(1). Note that

|I1,2,1| ≤ sup
x∈Rp

∣∣∣ℓ(αT
0 x)− ℓ̂(αT

0 x)
∣∣∣n−1

n∑
i=1

∣∣εi {xi −E(xi | βTxi)
}∣∣

+n−1
n∑

i=1

∣∣∣{ℓ̂(αT
0 xi)− ℓ̂(α̂Txi)

}∣∣∣ ∣∣εi {xi − E(xi | βTxi)
}∣∣

≤ sup
x∈Rp

∣∣∣ℓ(αT
0 x)− ℓ̂(αT

0 x)
∣∣∣n−1

n∑
i=1

∣∣εi {xi −E(xi | βTxi)
}∣∣

+2n−1
n∑

i=1

∣∣εiℓ′(αT
0 xi)

{
xi − E(xi | βTxi)

}
xT
i

∣∣ |α0 − α̂| .

Therefore, supβ∈Θ |I1,2,1| = op(1) follows immediately from the consistency of

α̂ and the uniform consistency of ℓ̂(αT
0 x). Similarly, supβ∈Θ |I1,2,2| = op(1) can

be proved. These two results imply that supβ∈Θ |I1,2| = op(1). Using the U -

statistic theory (Serfling (1980)), we can obtain that supβ∈Θ |I1,i| = op(1), i =

3, 4. Following similar arguments to deal with I1,2, we have supβ∈Θ |I1,5| = op(1).

That supβ∈Θ |I1,6| = op(1) follows directly from the Cauchy-Schwartz inequality

and standard results on the uniform convergence of Ê(x | βTx) and σ̂2(βTx) in

nonparametric regression. By combining these results, it follows that

Pr
{
sup
β∈Θ

| Î(β)− I(β) |≥ δ

2

}
→ 0

for any fixed δ, which completes the proof of (B.3).

Next we examine the root-n consistency of β̂. We expand the estimating

equation as 0 = n−1/2
∑n

i=1

{
xi − Ê(xi | β̂

T
xi)

}{
ε̂2i − σ̂2(β̂

T
xi)

}
=:

∑12
i=1 I2,i.

The terms I2,i’s are explicitly defined in the sequel.
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By the Central Limit Theorem,

I2,1 =: n−1/2
n∑

i=1

{
xi − E(xi | βT

0 xi)
}{

ε2i − σ2(βT
0 xi)

}
= Op(1).

Invoking the root-n consistency of α̂, we can show that

I2,2 =: n−1/2
n∑

i=1

{
xi −E(xi | βT

0 xi)
}{

ε̂2i − ε2i
}
= op(1).

Invoking (B.2), it follows that

I2,3 =
[
E
{
σ2(βT

0 x)
}′ {

x− E(x | βT
0 x)

}
xT + op(1)

]
n1/2

(
β0 − β̂

)
.

Because E
{
xi − E(xi | βT

0 xi) | βT
0 xi

}
= 0, U -statistic theory implies

I2,4 =: n−1/2
n∑

i=1

{
xi − E(xi | βT

0 xi)
}{

σ2(βT
0 x)− σ̂2(βT

0 x)
}
= op(1),

I2,5 =: n−1/2
n∑

i=1

{
E(xi | βT

0 xi)− Ê(xi | βT
0 xi)

}{
ε2i − σ2(βT

0 x)
}
= op(1).

By the uniform convergence of Ê(xi | βT
0 xi), and (B.1), it is easy to see

I2,6 =: n−1/2
n∑

i=1

{
E(xi | βT

0 xi)− Ê(xi | βT
0 xi)

}{
ε̂2i − ε2i

}
= op(1),

I2,7 =: n−1/2
n∑

i=1

{
E(xi | βT

0 xi)− Ê(xi | βT
0 xi)

}{
σ̂2(βT

0 x)− σ̂2(β̂
T
x)
}
= op(1).

Given nh4h42 → 0 and nhh2 → ∞, the Cauchy-Schwartz inequality implies

I2,8 =: n−1/2
n∑

i=1

{
E(xi | βT

0 xi)− Ê(xi | βT
0 xi)

}{
σ2(βT

0 x)− σ̂2(βT
0 x)

}
= 0.

By using the fact that E
{
ε2i − σ2(βT

0 x) | x
}
= 0, we can show that

I2,9 =: n−1/2
n∑

i=1

{
Ê(xi | βT

0 xi)− Ê(xi | β̂
T
xi)

}{
ε2i − σ2(βT

0 x)
}
,

I2,10 =: n−1/2
n∑

i=1

{
Ê(xi | βT

0 xi)− Ê(xi | β̂
T
xi)

}{
ε̂2i − ε2i

}
= op(1)n

1/2
(
β0 − β̂

)
.
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Invoking (B.2) again, we have

I2,11 =: n−1/2
n∑

i=1

{
Ê(xi | βT

0 xi)− Ê(xi | β̂
T
xi)

}{
σ̂2(βT

0 x)− σ̂2(β̂
T
x)
}

= op(1)n
1/2

(
β0 − β̂

)
,

I2,12 =: n−1/2
n∑

i=1

{
Ê(xi | βT

0 xi)− Ê(xi | β̂
T
xi)

}{
σ2(βT

0 x)− σ̂2(βT
0 x)

}
= op(1)n

1/2
(
β0 − β̂

)
.

By combining these results, we obtain that
(
β0 − β̂

)
= Op(n

−1/2).

The asymptotic normality follows immediately from the root-n consistency

described above and the Central Limit Theorem. That is,

E
[{

x− E(x | βT
0 x)

}{
σ2
0(β

T
0 x)

}′
xT

]
n1/2

(
β̂ − β0

)
= n−1/2

n∑
i=1

{
xi − E(x | βT

0 xi)
}{

ε2i − σ2(βT
0 x)

}
+ op(1),

which completes the proof of Theorem 1.

Proof of Theorem 2. It can be proved, following (B.2), the root-n consis-

tency of α̂ and β̂, and standard arguments in nonparametric regression. See, for

example, Ruppert and Wand (1994). Details are omitted from here.

Appendix C: Some preliminary results

We discuss the consistency of α̂, its convergence rate, and its asymptotic

normality. First we prove the consistency of α̂. Take

J(α) = E
{
Y − ℓ(αTx)

}{
x− E(x | αTx)

}
,

Ĵ(α) = n−1
n∑

i=1

{
Yi − ℓ̂(αTxi)

}{
xi − Ê(xi | αTxi)

}
.

Let U(α0) be any open set that includes α0. To prove the consistency of α̂, we

assume that infα∈Θ\U(α0) | J(α) |≥ δ for some positive constant δ. It suffices to

show

Pr

{
inf

α∈Θ\U(α0)
| Ĵ(α) |≤ δ

2

}
→ 0. (C.1)

The condition infα∈Θ\U(α0) | J(α) |≥ δ implies that

Pr

{
inf

α∈Θ\U(α0)
| Ĵ(α) |≤ δ

2

}
≤ Pr

{
inf

α∈Θ\U(α0)
| Ĵ(α)− J(α) |≥ δ

2

}
.
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Therefore, it suffices to show that

Pr

{
sup
α∈Θ

| Ĵ(α)− J(α) |≥ δ

2

}
→ 0

for any fixed δ. This follows directly from the consistency of Ĵ(α) if h1 → 0

and nh1/ log n → ∞. See, for example, Ichimura (1993, Lemmas 5.1-5.3), Zhu

and Fang (1996, Lemmas 3.1 and 3.3), and Pollard (1984, Thm. 2.37). (C.1) is

proved.

Next we prove the root-n consistency of α̂. With probability close to 1, by

a Taylor expansion, for α̃ between α0 and α̂,

0 = Ĵ(α̂) = Ĵ(α0) + Ĵ ′(α̃) (α̂−α0)

= Ĵ(α0) +
{
Ĵ ′(α̃)− Ĵ ′(α0)

}
(α̂−α0) + Ĵ ′(α0) (α̂−α0) . (C.2)

Recall the definition of Ĵ(α̂) and write Ĵ(α0)
def
=

∑4
i=1 Ĵi, where

Ĵ1 = n−1
n∑

i=1

{
Yi − ℓ(αT

0 xi)
}{

xi − E(xi | αT
0 xi)

}
,

Ĵ2 = n−1
n∑

i=1

{
Yi − ℓ(αT

0 xi)
}{

E(xi | αT
0 xi)− Ê(xi | αT

0 xi)
}
,

Ĵ3 = n−1
n∑

i=1

{
ℓ(αT

0 xi)− ℓ̂(αT
0 xi)

}{
xi − E(xi | αT

0 xi)
}
,

Ĵ4 = n−1
n∑

i=1

{
ℓ(αT

0 xi)− ℓ̂(αT
0 xi)

}{
E(xi | αT

0 xi)− Ê(xi | αT
0 xi)

}
.

Because E
[{
Y − ℓ(αT

0 x)
}{

x− E(x | αT
0 x)

}]
= 0, Ĵ1 is of the order Op(n

−1/2)

by the Central Limit Theorem. Both Ĵ2 and Ĵ3 are of the order op(n
−1/2) ac-

cording to the standard U -statistics theory (Serfling (1980)); by using Cauchy-

Schwartz inequality, Ĵ4 is less than[
Ê
{
ℓ(αT

0 x)− ℓ̂(αT
0 x)

}2
]1/2 [

E
{
E(x | αT

0 x)− Ê(x | αT
0 x)

}2
]1/2

,

which is of order Op

{
h41 + log n/(nh1)

}
. If nh81 → 0 and nh21/ log n → ∞,

then the last term is also op(n
−1/2). Combining these results, we obtained that

Ĵ(α0) = Op(n
−1/2).

By using the Weak Law of Large Numbers, we can see that Ĵ ′(α0) converges

in probability to J ′(α0) = E
[
ℓ′(αT

0 x)
{
x− E(x | αT

0 x)
}
xT

]
for nh21 → ∞ and
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nh81 → 0. Similarly, Ĵ ′(α̃)− Ĵ ′(α0) = op(1) in that α̂ is a consistent estimate of

α0. Therefore, α̂ is a root-n consistent estimate of α0.

The asymptotic normality of α̂ follows from its root-n consistency. Specifi-

cally, (C.2) implies that

n1/2 (α̂−α0) =
{
J ′(α0)

}−
n−1/2

n∑
i=1

εi
{
xi − E(xi | αTxi)

}
+ op(1)

where J ′(α0) = E
[
ℓ′(αT

0 x)
{
x− E(x | αT

0 x)
}
xT

]
and εi = Yi − ℓ(αT

0 xi).
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